
Dependent Types in Practical Programming

Hongwei Xi

December 6th, 1998

Department of Mathematical Sciences
Carnegie Mellon University

Pittsburgh, PA 15213

Submitted in partial ful�llment of the requirements
for the degree of Doctor of Philosophy

Thesis Committee:

Frank Pfenning, Chair
Peter Andrews
Robert Harper

Dana Scott

c©1998 Hongwei Xi

This research was partially sponsored by the Defense Advanced Research Project Agency, CSTO, under
the title “The Fox Project: Advanced Development of Systems Software”, ARPA Order No. C533.

The views and conclusions contained in this document are those of the author and should not be inter-
preted as representing the official policies, either expressed or implied, of DARPA or the U.S. government.

Abstract

Programming is a notoriously error-prone process, and a great deal of evidence in
practice has demonstrated that the use of a type system in a programming language
can effectively detect program errors at compile-time. Moreover, some recent studies
have indicated that the use of types can lead to significant enhancement of program
performance at run-time. For the sake of practicality of type-checking, most type
systems developed for general purpose programming languages tend to be simple
and coarse, and this leaves ample room for improvement. As an advocate of types,
this thesis addresses the issue of designing a type system for practical programming
in which a notion of dependent types is available, leading to more accurate capture
of program invariants with types.

In contrast to developing a type theory with dependent types and then designing
upon it a functional programming language, we study practical methods for extend-
ing the type systems of existing programming languages with dependent types. We
present an approach to enriching the type system of ML with a special form of de-
pendent types, where type index objects are restricted to some constraint domains
C, leading to the DML(C) language schema. The aim is to provide for specifica-
tion and inference of significantly more precise type information compared with the
current type system of ML, facilitating program error detection and compiler opti-
mization. A major complication resulting from introducing dependent types is that
pure type inference for the resulting system is no longer possible, but we show that
type-checking a sufficiently annotated program in DML(C) can be reduced to con-
straint satisfaction in the constraint domain C. Therefore, type-checking in DML(C)
can be made practical for those constraint domains C for which efficient constraint
solvers can be provided. We prove that DML(C) is a conservative extension over
ML, that is, a valid ML program is always valid in DML(C). Also we exhibit the
unobtrusiveness of our approach through many practical examples. As a significant
application, we also demonstrate the elimination of array bound checks in real code
with the use of dependent types. All the examples have been verified in a prototype
implementation of a type-checker for DML(C), where C is some constraint domain
in which constraints are linear inequalities on integers. This is another attempt
towards refining the type systems of existing programing languages, following the
step of refinement types (Freeman and Pfenning 1991).

To my parents,

who have been waiting patiently in general and impatiently at the last moment.

Acknowledgements

Foremost I especially thank my advisor Frank Pfenning for suggesting to me the wonderful thesis
topic. His sharp criticism on earlier versions of type-checking algorithms for DML was inspirational
to the adoption of the current bi-directional version. DML would have been much less attractive
without it. I have thus learned that a program can be trusted only if it can be clearly explained.
More importantly, I have also developed a taste for simplicity, which will surely have some profound
influence on my future research work. I also thank him for his unusual hospitality and patience in
general.

I thank Peter Andrews for teaching me automated theorem proving and providing me with the
opportunity to work as a research assistant on TPS, a theorem proving system based on higher-
order classic logic. This really brought me a lot of first-hand experience with writing large programs
in an untyped programming language (Common Lisp), and thus strongly motivated my research
work. I also thank him for his kindness in general.

I feel lucky that I took Robert Harper’s excellent course on type theory and programming
languages in 1994. I have since determined to do research related to promoting the use of types in
programming. The use of dependent types in array bound check elimination was partly motivated
by a question he raised during my thesis proposal. He also suggested the use of dependent types
in a typed assembly language, which seems to be a highly relevant and exciting research direction
to follow. I also thank him for his encouragement.

I am also grateful to Dana Scott for his generous and timely help, and for his kindness in
general, which I shall always look up to.

Thanks to Peter Lee and George Necula for providing me with interesting examples. Thanks to
Rowan Davies and Chad Brown for both helpful technical and interesting non-technical discussions.

Thanks to Feng Tang for her enduring many hardships together. Also thanks to my parents
for their being so patient, who once reasonably hoped that I could obtain a Ph.D degree before
their retirement. Instead, they have now retired for several years.

Contents

1 Introduction 1
1.1 Introductory Examples . 1
1.2 Basic Overview . 6
1.3 Related Work . 8

1.3.1 Constructive Type Theory and Related Systems 8
1.3.2 Computational Logic PX . 9
1.3.3 The Calculus of Constructions and Related Systems 9
1.3.4 Software Model Checking . 10
1.3.5 Extended ML . 11
1.3.6 Refinement Types . 11
1.3.7 Shape Analysis . 11
1.3.8 Sized Types . 11
1.3.9 Indexed Types . 11
1.3.10 Cayenne . 12

1.4 Research Contributions . 12
1.5 Thesis Outline . 13

2 Preliminaries 15
2.1 Untyped λ-calculus with Pattern Matching . 15

2.1.1 Dynamic Semantics . 17
2.2 Mini-ML with Pattern Matching . 19

2.2.1 Static Semantics . 20
2.2.2 Dynamic Semantics . 23
2.2.3 Soundness . 24

2.3 Operational Equivalence . 26
2.4 Summary . 32

3 Constraint Domains 35
3.1 The General Constraint Language . 35
3.2 A Constraint Domain over Algebraic Terms . 38
3.3 A Constraint Domain over Integers . 40

3.3.1 A Constraint Solver for Linear Inequalities 40
3.3.2 An Example . 42

3.4 Summary . 43

1

2 CONTENTS

4 Universal Dependent Types 45
4.1 Universal Dependent Types . 45

4.1.1 Static Semantics . 47
4.1.2 Dynamic Semantics . 51

4.2 Elaboration . 59
4.2.1 The External Language DML0(C) for MLΠ

0 (C) 59
4.2.2 Elaboration as Static Semantics . 60
4.2.3 Elaboration as Constraint Generation . 66
4.2.4 Some Informal Explanation on Constraint Generation Rules 72
4.2.5 An Example on Elaboration . 73
4.2.6 Elimination of Existential Variables . 77

4.3 Summary . 78

5 Existential Dependent Types 81
5.1 Existential Dependent Types . 81
5.2 Elaboration . 85

5.2.1 Coercion . 88
5.2.2 Elaboration as Static Semantics . 93
5.2.3 Elaboration as Constraint Generation . 97

5.3 Summary . 100

6 Polymorphism 103
6.1 Extending ML0 to ML∀0 . 103

6.1.1 Static Semantics . 104
6.1.2 Dynamic Semantics . 105

6.2 Extending MLΠ,Σ
0 (C) to ML∀,Π,Σ0 (C) . 107

6.2.1 Static Semantics . 108
6.2.2 Dynamic Semantics . 111
6.2.3 Elaboration . 113
6.2.4 Coercion . 115

6.3 Summary . 116

7 Effects 117
7.1 Exceptions . 117

7.1.1 Static Semantics . 117
7.1.2 Dynamic Semantics . 118

7.2 References . 120
7.2.1 Static Semantics . 121
7.2.2 Dynamic Semantics . 121

7.3 Value Restriction . 125
7.4 Extending ML0,exc,ref with Polymorphism and Dependent Types 127
7.5 Elaboration . 133
7.6 Summary . 133

CONTENTS 3

8 Implementation 135
8.1 Refinement of Built-in Types . 135
8.2 Refinement of Datatypes . 136
8.3 Type Annotations . 137
8.4 Program Transformation . 139
8.5 Indeterminacy in Elaboration . 139
8.6 Summary . 140

9 Applications 141
9.1 Program Error Detection . 141
9.2 Array Bound Check Elimination . 143

9.2.1 Experiments . 144
9.3 Potential Applications . 147

9.3.1 Dead Code Elimination . 147
9.3.2 Loop Unrolling . 149
9.3.3 Dependently Typed Assembly Language . 151

9.4 Summary . 152

10 Conclusion and Future Work 155
10.1 Current Status . 155

10.1.1 Language Design . 155
10.1.2 Language Implementation . 156

10.2 Future Research in Language Design . 156
10.2.1 Modules . 156
10.2.2 Combination of Different Refinements . 157
10.2.3 Constraint Domains . 157
10.2.4 Other Programming Languages . 157
10.2.5 Denotational Semantics . 158

10.3 Future Implementations . 158

A DML Code Examples 159
A.1 Knuth-Morris-Pratt String Matching . 159
A.2 Red/Black Tree . 161
A.3 Quicksort on Arrays . 165
A.4 Mergesort on Lists . 170
A.5 A Byte Copy Function . 171

4 CONTENTS

List of Figures

1.1 The reverse function on lists . 2
1.2 Quicksort on integer lists . 4
1.3 Binary search on arrays . 5
1.4 A call-by-value evaluator for simply typed λ-calculus (I) 6
1.5 A call-by-value evaluator for simply typed λ-calculus (II) 7

2.1 The syntax for λpat
val . 16

2.2 The pattern matching rules for λpat
val . 18

2.3 The evaluation rules for the natural semantics of λpat
val 18

2.4 The syntax for ML0 . 20
2.5 The typing rules for patterns in ML0 . 20
2.6 The typing rules for ML0 . 21
2.7 Some evaluation rules for the natural semantics of ML0 23

3.1 The sort formation and sorting rules for type index objects 37
3.2 The rules for satisfiability verification . 39
3.3 The signature of the integer domain . 41
3.4 Sample constraints . 41

4.1 The syntax for MLΠ
0 (C) . 46

4.2 The type formation rules for ML0 . 46
4.3 Typing rules for patterns . 47
4.4 Typing Rules for MLΠ

0 (C) . 48
4.5 The pattern matching rules for MLΠ

0 (C) . 49
4.6 Natural Semantics for MLΠ

0 (C) . 52
4.7 The definition of erasure function ‖ · ‖ . 54
4.8 The elaboration rules for patterns . 61
4.9 The elaboration rules for MLΠ

0 (C) (I) . 63
4.10 The elaboration rules for MLΠ

0 (C) (II) . 64
4.11 The constraint generation rules for MLΠ

0 (C) (I) . 68
4.12 The constraint generation rules for MLΠ

0 (C) (II) 69
4.13 The rules for eliminating existential variables . 79

5.1 The derivation rules for coercion . 89
5.2 The constraint generation rules for coercion . 92
5.3 The elaboration rules for MLΠ,Σ

0 (C) (I) . 94

5

6 LIST OF FIGURES

5.4 The elaboration rules for MLΠ,Σ
0 (C) (II) . 95

5.5 The constraint generation rules for MLΠ,Σ
0 (C) (I) 98

5.6 The constraint generation rules for MLΠ,Σ
0 (C) (II) 99

6.1 Type formation rules for ML∀0 . 104
6.2 Typing rules for pattern matching in ML∀0 . 105
6.3 Typing Rules for ML∀0 . 106
6.4 Type formation rules for ML∀,Π,Σ0 (C) . 108
6.5 Typing rules for patterns . 109
6.6 Typing Rules for ML∀,Π,Σ0 (C) . 110
6.7 The inference rules for datatype constructor status 115

7.1 The natural semantics for ML0,exc (I) . 118
7.2 The natural semantics for ML0,exc (II) . 119
7.3 The natural semantics for ML0,exc,ref (I) . 122
7.4 The natural semantics for ML0,exc,ref (II) . 123
7.5 The syntax for ML∀,Π,Σ0,exc,ref(C) . 128

7.6 Additional typing rules for ML∀,Π,Σ0,exc,ref(C) . 129

7.7 Additional evaluation rules for ML∀,Π,Σ0,exc,ref(C) . 129
7.8 Some elaboration rules for references and exceptions 134

8.1 Dependent types for some built-in functions . 136

9.1 The red/black tree data structure . 142
9.2 The dot product function . 144
9.3 Dec Alpha 3000/600 using SML of NJ working version 109.32 147
9.4 Sun Sparc 20 using MLWorks version 1.0 . 148
9.5 loop unrolling for sumArray . 151
9.6 The C version of dotprod function . 152
9.7 The DTAL version of dotprod function . 153

Chapter 1

Introduction

Types play a pivotal rôle in the design and implementation of programming languages. The use
of types for catching program errors at compile-time goes back to the early days of FORTRAN. A
compelling reason for this practice is briefly explained in the following quote.

Unfortunately one often pays a price for [languages which impose no discipline of types]
in the time taken to find rather inscrutable bugs—anyone who mistakenly applies CDR
to an atom in LISP and finds himself absurdly adding a property list to an integer, will
know the symptoms. – Robin Milner

A Theory of Type Polymorphism in Programming (Milner 1978)

It is also well-known that a well-designed type system such as that of ML (Milner, Tofte, and
Harper 1990) can effectively enable the programmer to catch numerous program errors at compile-
time. However, there are also various occasions in which many common program errors cannot
be caught by the type system of ML. For instance, the error of taking the first element out of an
empty list cannot be caught by the type system of ML because it does not distinguish empty lists
from non-empty ones.

The use of types for compiler optimization, such as passing types to a polymorphic function to
help eliminate boxing and/or tagging objects, is a much more recent discovery. However, the type
system of ML is also inadequate in this direction. For instance, it is desirable to express the type
of a safe array access operation since a compiler can then eliminate run-time array bound checks
after type-checking, but it is not clear how to do this in the current type system of ML.

In the rest of this chapter we use concrete examples to illustrate the advantage of enriching the
type system of ML with dependent types. We also describe the context in which this thesis exists,
and then outline the rest of the thesis.

1.1 Introductory Examples

In this section we present several introductory examples to illustrate the expressiveness of the type
system which we will soon formulate and study. We suggest that the reader pay further attention
to these examples when studying the theoretical core of the thesis later. Some larger examples can
be found in Appendix A.

Notice that a correct implementation of a reverse function on lists should return a list of the
same length as that of its argument. Unfortunately, this property cannot be captured by the type

1

2 CHAPTER 1. INTRODUCTION

datatype ’a list = nil | cons of ’a * ’a list
typeref ’a list of nat (* indexing datatype ’a list with nat *)
with nil <| ’a list(0)

| cons <| {n:nat} ’a * ’a list(n) -> ’a list(n+1)

fun(’a)
reverse(l) =
let

fun rev(nil, ys) = ys
| rev(cons(x, xs), ys) = rev(xs, cons(x, ys))

where rev <| {m:nat}{n:nat} ’a list(m) * ’a list(n) -> ’a list(m+n)
in rev(l, nil) end

where reverse <| {n:nat} ’a list(n) -> ’a list(n)

Figure 1.1: The reverse function on lists

system of ML. The inadequacy can be remedied if we introduce dependent types. The example in
Figure 1.1 is written in the style of Standard ML with some annotations, which will be explained
shortly. We assume that we are working over the constraint domain of natural numbers with
constants 0 and 1 and addition operation +. The polymorphic datatype ’a list is defined to
represent the type of lists. This datatype is indexed by a natural number, which stands for the
length of a list in this case. The constructors associated with the datatype ’a list are then
assigned dependent types:

• nil <| ’a list(0) states that nil is a list of length 0.

• cons <| {n:nat} ’a * ’a list(n) -> ’a list(n+1) states that cons yields a list of length
n + 1 when given a pair consisting of an element and a list of length n. Note that {n:nat}
means that n is universally quantified over natural numbers, usually written as Πn : nat.

The use of fun(’a) is a recent feature of Standard ML (Milner, Tofte, Harper, and MacQueen
1997), which allows the programmer to explicitly control the scope of the type variable ’a. The
type of reverse is

{n:nat} ’a list(n) -> ’a list(n),

which states that reverse always returns an a list of length n if given one of length n. In this way,
we have captured the information that the function reverse is length-preserving. Notice that we
have also assigned the auxiliary function rev the following dependent type,

{m:nat}{n:nat} ’a list(m) * ’a list(n) -> ’a list(m+n)

that is, rev always returns a list of length m + n when given a pair of lists of lengths m and n.
respectively. This invariant must be provided in order to type-check the entire code.

The next example in Figure 1.2 implements a quicksort function on intlist. The datatype
intlist, which represents an integer list, is indexed by an integer which stands for the sum of all
elements in the integer list. The following type of quicksort

{sum:int} intlist(sum) -> intlist(sum)

1.1. INTRODUCTORY EXAMPLES 3

states that the the sum of all elements in the output intlist of the function always equals the
sum of all elements in its input intlist. Therefore, if one mistakenly writes

par(x, intCons(x,left),right, ys) instead of par(x, intCons(y,left), right, ys),

the error, which is not unusual, can be captured in the enriched type system. Notice that this error
slips through the current type system of ML.

The above examples exhibit some potential use of dependent types in compile-time program
error detection. We now show some potential use of dependent types in compiler optimization.
The example in Figure 1.3 implements a binary search function on a polymorphic array. The
asserted type of the subscript function sub precisely states that it returns an element of type ’a
when given an ’a array of size n and and an integer equal to i such that 0 ≤ i < n holds. Clearly,
if the subscript function sub of this type is called, there is no need for inserting run-time array
bound checks for checking possible memory violations. This not only enhances the robustness of
the code but also its efficiency, illustrating that safety and efficiency issues can be complementary,
sometimes.

Note that the programmer has to provide an appropriate type for the inner function look in
order to have the code type-checked successfully. We will come back to this point later.

There is a common feature in the above three examples, that is all the type index objects are
drawn from the integer constraint domain. The next example in Figure 1.4 and Figure 1.5 shows
that we can also index datatypes with type index objects drawn from different constraint domains.
Since this example is considerably involved, we present some detailed explanation.

The datatype simple_type represents simple types in a simply typed λ-calculus. The datatype
type context is basically a list of simple types, which is used to assigns types to free variables in
a λ-expression. The datatype lambda_exp is for formulating simply typed λ-expressions in the de
Bruijn’s notation (de Bruijn 1980). For instance, λxλy.y(x) can be represented as

Abs(Abs(App(One, Shift(One)))).

The datatypes closure and enviroment are defined mutually recursively. An environment is a
list of closures and a closure is a λ-abstraction associated with an environment which binds every
free variable in the λ-abstraction to some closure.

We now refine some of these datatype types into dependent types in Figure 1.4. The datatype
lambda_exp is made dependent on a pair (t,ctx), where t stands for the simple type of a lambda-
expression under the context ctx. Then we assign dependent types to the constructors associated
with the datatype lambda_exp. For instance, the dependent type of App states that App yields an
λ-expression of type tb under context ctx if given a pair of λ-expressions of types Fun(ta,tb) and
ta under context ctx, respectively.

The datatype closure is made dependent on an index drawn from the type simple_type,
which stands for the type of a closure. Also the datatype environment, is made dependent on an
index drawn from the type context, which is a list of simple types corresponding to the list of
closures in the environment.

We assign the function call_by_value the following type

{t:simple_type} lambda_exp(t, CTXempty) -> closure(t)

which states that this function always returns a closure of type t when given an argument of
type lambda_exp(t,CTXempty), i.e., a closed λ-expression of type t. This simply means that this

4 CHAPTER 1. INTRODUCTION

datatype intlist = intNil | intCons of int * intlist

typeref intlist of int (* sum *)
with intNil <| intlist(0)
| intCons <| {i:nat, sum:int} int(i) * intlist(sum) -> intlist(i+sum)

fun intAppend(intNil, rs) = rs
| intAppend(intCons(l, ls), rs) = intCons(l, intAppend(ls, rs))

where intAppend <| {sm:int, sn:int} intlist(sm) * intlist(sn) -> intlist(sm+sn)

fun quicksort(intNil) = intNil
| quicksort(intCons(x,xs)) =

let
fun par(x, left, right, intNil) =

intAppend(quicksort(left), intCons(x,quicksort(right)))
| par(x, left, right, intCons(y,ys)) =

if y <= x then par(x, intCons(y,left), right, ys)
else par(x, left, intCons(y,right), ys)

where par <| {i:int, sp:int, sq:int, sr:int}
int(i) * intlist(sp) * intlist(sq) * intlist(sr) ->
intlist(i+sp+sq+sr)

in par(x, intNil, intNil, xs) end
where quicksort <| {sum:int} intlist(sum) -> intlist(sum)

Figure 1.2: Quicksort on integer lists

1.1. INTRODUCTORY EXAMPLES 5

datatype ’a answer = NONE | SOME of int * ’a

assert sub <| {n:nat, i:int | 0 <= i < n } ’a array(n) * int(i) -> ’a
assert length <| {n:nat} ’a array(n) -> int(n)

fun(’a){size:nat}
bsearch cmp (key, arr) =
let

fun look(lo, hi) =
if hi >= lo then

let
val m = (hi + lo) div 2
val x = sub(arr, m)

in
case cmp(key, x) of

LESS => look(lo, m-1)
| EQUAL => SOME(m, x)
| GREATER => look(m+1, hi)

end
else NONE

where look <| {l:nat, h:int | 0 <= l <= size /\ 0 <= h+1 <= size }
int(l) * int(h) -> ’a answer

in
look (0, length arr - 1)

end
where bsearch <| (’a * ’a -> order) -> ’a * ’a array(size) -> ’a answer

Figure 1.3: Binary search on arrays

6 CHAPTER 1. INTRODUCTION

datatype simple_type = Base of int | Fun of simple_type * simple_type

datatype context = CTXempty | CTXcons of simple_type * context

datatype lambda_exp =
One | Shift of lambda_exp |
Abs of lambda_exp |
App of lambda_exp * lambda_exp

typeref lambda_exp of simple_type * context
with One <| {t:simple_type}{ctx:context} lambda_exp(t,CTXcons(t,ctx))

| Shift <| {ta:simple_type}{tb:simple_type}{ctx:context}
lambda_exp(ta,ctx) -> lambda_exp(ta,CTXcons(tb,ctx))

| Abs <| {ta:simple_type}{tb:simple_type}{ctx:context}
lambda_exp(tb,CTXcons(ta,ctx)) ->
lambda_exp(Fun(ta,tb),ctx)

| App <| {ta:simple_type}{tb:simple_type}{ctx:context}
lambda_exp(Fun(ta,tb),ctx) * lambda_exp(ta,ctx) -> lambda_exp(tb,ctx)

datatype closure = Closure of lambda_exp * environment
and environment = ENVempty | ENVcons of closure * environment

typeref closure of simple_type
with Closure <| {t:simple_type}{ctx:context}

lambda_exp(t,ctx) * environment(ctx) -> closure(t)
and environment of simple_type * context
with ENVempty <| environment(CTXempty)

| ENVcons <| {t:simple_type}{ctx:context}
closure(t) * environment(ctx) -> environment(CTXcons(t,ctx))

Figure 1.4: A call-by-value evaluator for simply typed λ-calculus (I)

implementation of an evaluator for the pure simply typed call-by-value λ-calculus á la Curry typing
is a type-preserving function. Clearly, the programmer should have much more confidence in the
correctness of the function call_by_value after the code passes type-checking.

1.2 Basic Overview

We outline in this section the historic context in which this thesis is developed, and mention some
related work in the next section.

The problem of correctness of programs is ever present in programming. There has been a long
history of research work on program verification.

The use of assertions to specify and prove correctness of flowchart programs was developed
independently by Naur (Naur 1966) and Floyd (Floyd 1967). Hoare then constructed a partial-

1.2. BASIC OVERVIEW 7

fun call_by_value(e) =
let
fun cbv(One, ENVcons(clo, env)) = clo

| cbv(Shift(e), ENVcons(clo, env)) = cbv(e, env)
| cbv(Abs(e), env) = Closure(Abs(e), env)
| cbv(App(f, e), env) =
let
val Closure(Abs(body), fenv) = cbv(f, env)
val clo = cbv(e, env)

in
cbv(body, ENVcons(clo, fenv))

end
where cbv <| {t:simple_type, ctx:context}

lambda_exp(t,ctx) * environment(ctx) -> closure(t)
in
cbv(e, ENVempty)

end
where call_by_value <| {t:simple_type} lambda_exp(t, CTXempty) -> closure(t)

Figure 1.5: A call-by-value evaluator for simply typed λ-calculus (II)

correctness system (Hoare 1969) which brought us Hoare logic. Then Dijkstra invented the notion
of weakest preconditions (Dijkstra 1975) and explored it in more details, with many examples,
in (Dijkstra 1976). As a generalization of the weakest-precondition approach, refinement logics
have become an active research area in recent years. These approaches are in general notoriously
difficult and expensive to put into software practice. Only small pieces of safety critical software
can afford to be formally verified with such approaches. Although rapid progress has been made,
there are still strong reservations on whether daily practical programming can benefit much from
these approaches. However, these approaches are gaining grounds in the verification of hardware.

For functional programming languages we find two principal styles of reasoning: equational and
logical .

Equational reasoning is performed through program transformation, which has its roots in
(Church and Rosser 1936). Burstall and Darlington presented a transformation system for devel-
oping recursive programs (Burstall and Darlington 1977). Also we have Bird-Meertens calculus
for derivation of functional programs from a specification (Bird 1990), which consists of a set of
higher-order functions that operate on lists including map, fold, scan, filter, inits, tails, cross prod-
uct and function composition. Equational reasoning also plays a fundamental role in FP and EML
(Kahrs, Sannella, and Tarlecki 1994).

Logical reasoning is most often cast into type theory, which has its roots in (Church 1940;
Martin-Löf 1984). This approach emphasizes the joint development of proofs and programs. Many
systems such as NuPrl (Constable et al. 1986), Coq (Coquand 1991), LEGO (Pollack 1994), ALF
(Augustsson, Coquand, and Nordström 1990) and PVS (Shankar 1996) are based on some variants
of type theory, though this can also be done in a “type-free” setting as shown in PX (Hayashi
and Nakano 1988). However, recently it has also been used to generate post-hoc proofs and proof

8 CHAPTER 1. INTRODUCTION

skeletons from functional programs together with specifications (Parent 1995).
There are several major difficulties associated with type-theoretic approaches.

1. Languages tend to be unrealistically small. Although pure type systems (Barendregt 1992)
can be formulated concisely and elegantly, they contain too few language constructs to sup-
port practical programming.

2. It is unwieldy to add programming features into pure type theories. This is attested in the
works such as allowing unlimited recursion (Constable and Smith 1987), introducing recursive
types (Mendler 1987), and incorporating effects (Honsell, Mason, Smith, and Talcott 1995),
exceptions (Nakano 1994) and input/output.

3. Type-checking is usually undecidable in systems enriched with recursion and dependent types.
Therefore, type-checking programs requires a certain level of theorem proving. For systems
such as NuPrl and PVS, type-checking is interactive and may often become a daunting task
for programmers.

4. It is heuristic at best to do theorem proving by tactics during type-checking, and this requires
a lot of user interactions. Since small changes in program may often mean a big change in
a proof and there are many changes to be made during the program development cycle, the
cost in effort and time often deters the user from programming in such a setting.

Instead, we propose to enrich the type systems of an existing functional programming language
(ML). In contrast to adjusting programming language features such as recursion, effects and ex-
ceptions to a type theory, we study approaches to adjusting a type theory to these programming
language features. We refine ML types with dependent types and introduce a restricted form of de-
pendent types, borrowing ideas from type theory. This enables us to assert additional properties of
programs in their types, providing significantly more information for program error detection and
compiler optimization. In order to make type-checking manageable in this enriched type system,
we require that type dependencies be taken from some restricted constraint domain C, leading to
the DML(C) language schema. We then prove that type-checking a sufficiently annotated program
in DML(C) can be reduced to constraint satisfaction in the constraint domain C. An immediate
consequence of this reduction is that if we choose C to be some relative simple constraint domains
for which there are practical approaches to solving constraints, then we can construct a practical
type-checking algorithm for DML(C). We will focus on the case where C is some integer constraint
domain in which the constraints are linear inequalities on integers.

1.3 Related Work

It is certainly beyond reasonable hope to mention even a moderate part of the research on the
correctness of programs. This is simply because of the vastness of the field. We shall examine
some efforts which have a close connection to our work, mostly concerning type theories and their
applications. We start with Martin-Löf’s constructive type theory.

1.3.1 Constructive Type Theory and Related Systems

The system of constructive type theory is based primarily on the work of Per Martin-Löf (Martin-
Löf 1985; Martin-Löf 1984). Its core idea often reads propositions as types. This is a system which

1.3. RELATED WORK 9

is simultaneously a logic and a programming language. Programs are developed in such a way that
they must behave according to their specifications. This is achieved through formal proofs which
are written within the programs. The correctness of these proofs is verified by type-checkers.

NuPrl The NuPrl proof system was developed to allow the extraction of programs from the proof
of specifications (Constable et al. 1986). Its logical basis is a sequent-calculus formulation of a
descendant of constructive type theory. Similarly to LCF it features a goal-oriented proof engine
employing tactics formulated in the ML programming language. The emphasis of NuPrl is logical,
in that it is designed to support the top-down construction of derivations of propositions in a
deduction system.

ALF The ALF (Another Logical Framework) system is an interactive proof editing environment
where proof objects for mathematical theorems are constructed on screen. It is based on Martin-
Löf’s monomorphic type theory (Augustsson, Coquand, and Nordström 1990; Nordström 1993).
The proof editor keeps a theory environment, a dictionary with abbreviations and a scratch area.
The user navigates in the scratch area to build proofs in top-down and/or bottom-up fashion. A
novelty of ALF lies in its use of pattern matching with dependent types (Coquand 1992) for defining
functions. The totality of functions defined by pattern matching is guaranteed by some restrictions
on recursive equational definitions. This allows the user to formulate significantly shorter proofs
in ALF than in many other systems.

1.3.2 Computational Logic PX

Realizability models of intuitionistic formal systems also allow the extraction of computations
from the systems. PX is such a system which is introduced in (Hayashi 1990) and described
in detail in (Hayashi and Nakano 1988). PX is a logic for a type-free theory of computation
based on Feferman’s T0 (Feferman 1979), from which LISP programs are extracted by a notion of
realizability: PX-realizability. Hayashi argues that the requirement that a theory be total is too
restrictive for practical programming, in justification of his logic being based around a system of
possibly nonterminating computations.

Also Hayashi proposed a type system ATTT in (Hayashi 1991), which allows a notion of re-
finement types as in the type system for ML (Freeman and Pfenning 1991), plus intersection and
union of refinement types and singleton refinement types. He demonstrated that singleton, union
and intersection types allow the development of programs without unnecessary coding via a variant
of the Curry-Howard isomorphism. More exactly, they give a way to write types as specifications
of programs without unnecessary coding which is inevitable otherwise.

1.3.3 The Calculus of Constructions and Related Systems

Calculus of Constructions and Coq The calculus of constructions (CC) is a type system which
basically enriches Girard’s Fω with types dependent on terms. It therefore relates to Martin-Löf’s
intuitionistic theory of types (TT) in this respect. CC was originally developed and implemented
by Coquand and Huet (Coquand and Huet 1985; Coquand and Huet 1988). Coquand and Paulin-
Mohring proposed to extend CC with primitive inductive definitions (Paulin-Mohring 1993), which
led to the calculus of inductive constructions and its implementation in the Coq proof assistant
consisting of a proof-checker for CC, a facility called Mathematical Vernacular for the high-level

10 CHAPTER 1. INTRODUCTION

notation of mathematical theories, and an interactive theorem prover based on tactics written in
the Caml dialect of the ML language.

Recently, Parent (Parent 1995) proposed to reverse the process of extracting programs from
constructive proofs in Coq, synthesizing, post hoc, proofs from programs. This approach has a close
connection to ours, in that we are trying to use dependent types expressing additional properties of
programs which are then verified by a type-checker. Relying on a weak extraction function which
produces programs with annotations, Parent introduced a new language for annotated programs
and proved that partial proof terms can be deterministically retrieved from given programs in this
language and their specifications. Then she showed that such an extraction function is invertible,
deducing an algorithm for reconstructing proofs from programs. She also proved the validity and
completeness (in a certain sense) of this approach. Programs usually have prohibitively many
annotations in the new language, preventing the user from writing sufficiently natural programs.
A heuristic algorithm for generating partial proof terms was then proposed and implemented in
Coq as a tactic. This tactic builds a partial proof term from a program and a specification, and
then the usual Coq tactics are called to fulfill the proof obligations.

ECC and LEGO The Extended Calculus of Constructions (ECC) (Luo 1989) unifies ideas from
Martin-Löf’s type theory and the Calculus of Constructions. In (Lou 1991) a further extension
of the framework by datatypes covered with a general form of schemata is proposed. The LEGO
system implements ECC, in which the use of inductive definitions and pattern matching is appealing
to practical work on proofs.

1.3.4 Software Model Checking

Model checking is superior to general theorem proving in a few aspects. Model checking need
not invent lemmas or devise proof strategies, offering full automation. Also model checking can
generate counterexamples when a check fails. Both software specifications and their intended
properties can be expressed in a simple relational calculus (Jackson, Somesh, and Damon 1996).
The claim that a specification satisfies a property becomes a relational formula that can then be
checked automatically by enumerating the formula’s interpretations if the number of interpretation
is finite. Unfortunately, in software designs, state explosion arises more from the data structures
of a single program than from the product of the control states of several programs. The result is
that the number of different interpretations for a relational formula is in general vastly too great
for brute-force enumerations to be feasible. Even worse, it is quite often the case where such a
formula can have infinitely many interpretations. In (Jackson, Somesh, and Damon 1996), it is
proposed to reduce the number of cases which a checker must consider by eliminating isomorphic
interpretations. This strategy has been successfully tried in hardware verification. Also with great
care one needs to downscale the state space of a system, bring it into the reach of a checker. This
is based on the assumption that if a bug lies in the original system, then it is likely to cause a bug
in the downscaled system. Experience suggests that enumerating all behaviors for the downscaled
machine is a more reliable debugging method than exploring merely some cases for the original
system.

As we will see, if we choose C to be some finite domain then model checking seems to be a
natural approach to solving the constraints generated during type-checking programs in DML(C).

1.3. RELATED WORK 11

1.3.5 Extended ML

Sannella and Tarlecki proposed Extended ML (Sannella and Tarlecki 1989) as a framework for
the formal development of programs in a pure fragment of Standard ML. The module system of
Extended ML can not only declare the type of a function but also the axioms it satisfies. This leads
to the need for theorem proving during type checking. We specify and check less information about
functions which avoids general theorem proving. On the other hand, we currently do not address
module-level issues, although we believe that our approach should extend naturally to signatures
and functors without much additional machinery.

1.3.6 Refinement Types

Tim Freeman and Frank Pfenning proposed refinement types for ML (Freeman and Pfenning 1991).
A user-defined ML datatype can be refined into a finite lattice of subtypes. In this extension, type
inference is decidable and every well-typed expression has a principal type. The user is free to omit
type declaration almost everywhere in a program. A prototype implementation (Freeman 1994)
exhibits that this is a promising approach to enriching the type systems of ML. Our thesis work
follows the paradigm of refinement types.

1.3.7 Shape Analysis

Jay and Sekanina (Jay and Sekanina 1996) introduced a technique for array bounds checking based
on the notion of shape types. Shape checking is a kind of partial evaluation and has very different
characteristics and source language when compared to DML(C), where C consists of linear integer
equality and inequality constraints. We feel that their design is more restrictive and seems more
promising for languages based on iteration schemas rather than general recursion.

1.3.8 Sized Types

Hughes, Pareto and Sabry (Hughes, Pareto, and Sabry 1996) introduced the notion of sized types
for proving the correctness of reactive systems. Though there exist some similarities between sized
types and datatype refinement in DML(C) for some domain C on natural numbers, the differences
seem to be substantial. We feel that the language presented in (Hughes, Pareto, and Sabry 1996)
is too restrictive for general purpose programming since the type system there can only handle (a
minor variation of) primitive recursion. On the other hand, the use of sized types in the correctness
proofs of reactive systems cannot be achieved in DML at this moment.

1.3.9 Indexed Types

So far the most closely related to our work is the system of indexed types developed independently
by Zenger in his forthcoming Ph.D. Thesis (Zenger 1998) (an earlier version of which is described
in (Zenger 1997)). He works in the context of of lazy functional programming. His language is clean
and elegant and his applications (which significantly overlap with ours) are compelling. In general,
his approach seems to require more changes to a given Haskell program to make it amenable to
checking indexed types than is the case for our system and ML. This is particularly apparent in the
case of existential dependent types, which are tied to data constructors. This has the advantage
of a simpler algorithm for elaboration and type-checking than ours, but the program (and not just

12 CHAPTER 1. INTRODUCTION

the type) has to be more explicit. Also, since his language is pure, he does not consider a value
restriction.

1.3.10 Cayenne

Cayenne (Augustsson 1998) is a Haskell-like language in which fully dependent types are available,
that is, language expressions can be used as type index objects. The steep price for this is unde-
cidable type-checking in Cayenne. We feel that Cayenne pays greater attention to making more
programs typable than assigning programs more accurate types. In Cayenne, the printf in C,
which is not typable in ML, can be made typable, and modules can be replaced with records, but
the notion of datatype refinement does not exist. This clearly separates our language design from
that of Cayenne.

1.4 Research Contributions

The notion of dependent types has been around for at least three decades, but it has not been
made applicable to practical programming before. One major obstacle is the difficulty in designing
a practical type-checking algorithm for dependent type systems.

The main contribution of this thesis is that we convincingly demonstrate the use of a restricted
form of dependent types in practical programming. We present a sound and practical approach to
extending the type system of ML with dependent types, achieving this through theoretical work,
actual implementation and evaluation. The following consists of some major steps which lead to
the substantiation of this claim.

1. We separate type index objects from expressions in the programming language. More pre-
cisely, we require that type index objects be restricted to some constraint domains C. We
then prove that type-checking a sufficiently annotated program in this setting can be reduced
to constraint satisfaction in C. It is this crucial decision in our language design which makes
type-checking practical in the case where there are feasible approaches to solving constraints
in C.

2. We prove that our enriched language is a conservative extension of ML. Therefore, a program
which uses no features of dependent types behaves exactly the same as in ML at both compile
and run time.

3. We show that dependent types cope well with many important programming features such
as polymorphism, mutable references and exceptions.

4. We exhibit the unobtrusiveness of dependent types in practical programming by writing
programs as well as by modifying existing ML code. Though the programmer has to provide
type annotations in many cases in order to successfully type-check the code, the amount of
work is moderate (type annotations usually accounts for less than 20% of the entire code).
On the other hand, all type annotations are type-checked mechanically, and therefore they
can be fully trusted when used as program documentation.

1.5. THESIS OUTLINE 13

5. We also demonstrate that the programmer can supply type annotations to safely remove
array bound checks. This leads to not only more robust programs but also significantly more
efficient code.

In a larger scale, the dependent types also have the following potential applications, for which we
will provide illustrating examples.

1. The dependent types in the source code can be passed down to lower level languages. For
instance, we are also in the process of designing a dependently typed assembly language, in
which the dependent types passed down from the source code can be used to generate a
proof asserting the memory integrity of the assembly code. Therefore, our source language
is promising to act as a front-end for generating proof-carrying code (Necula 1997).

2. The dependent types can facilitate the elimination of redundant matches in pattern matching.
On one hand, this can lead to more accurate error or warning message reports during type-
checking. One the other hand, this opens an exciting avenue to dependent type directed partial
evaluation as shown in Section 9.3.2.

1.5 Thesis Outline

The rest of the thesis is organized as follows.
In the next chapter, we start with an untyped language which is basically the call-by-value

λ-calculus extended with general pattern matching. The importance of this language lies in its
operational semantics, to which we will relate the operational semantics of typed languages for-
mulated later. We then introduce a typed programing language ML0, which is basically mini-ML
extended with general pattern matching. We prove various well-known properties of ML0, which
mainly serve as the guidance for our further development. Also we study the operational equiva-
lence relation in λpat

val , which is later needed in the proof of the correctness of elaboration algorithms
in Chapters 4 and 5.

The language enriched with dependent types will be parameterized over a constraint domain
from which the type index objects are drawn. We introduce a general constraint language in
Chapter 3 upon which a constraint domain is formulated. We then present some concrete examples
of constraint domains, including the integer domain needed for array bound check elimination.

In Chapter 4, we introduce the notion of universal dependent types and extend ML0 with this
form of types. This leads to the programming language MLΠ

0 (C). We then prove various important
properties of MLΠ

0 (C) and relate its operation semantics to that of ML0. This culminates with the
conclusion that MLΠ

0 (C) is a conservative extension of ML0. In order to show the unobtrusiveness
of universal dependent types in programming, we also formulate an external programming language
DML0(C) for MLΠ

0 (C) which closely resembles that for mini-ML. We then present an elaboration
mapping from DML0(C) to MLΠ

0 (C) and prove its correctness.
In Chapter 5, we explain some inadequacies of MLΠ

0 (C) through examples and introduce the
notion of existential dependent types. We extend MLΠ

0 (C) with this form of types and obtain
the programming language MLΠ,Σ

0 (C). The external language DML0(C) is extended accordingly.
The initial development of this chapter is parallel to that of the previous one. However, it seems
difficult to find an elaboration mapping from DML0(C) to MLΠ,Σ

0 (C) directly. We point out the
difficulty and suggest some methods to overcome it. Then an elaboration mapping for MLΠ,Σ

0 (C)

14 CHAPTER 1. INTRODUCTION

is presented and proven to be correct. The theoretical core of the thesis consist of Chapter 4 and
5.

We study combining dependent types with polymorphism in Chapter 6. Though the develop-
ment of dependent types is largely orthogonal to polymorphism, there are still some practical issues
which we must address. We introduce ML∀0 , a language which extends ML0 with let-polymorphism,
and set up the machinery for combining dependent types with let-polymorphism. Lastly, we present
a two-phase elaboration algorithm for achieving full compatibility between ML∀0 and ML∀,Π,Σ0 (C),
the language which extends MLΠ,Σ

0 (C) with let-polymorphism.
In Chapter 7, we study the interaction of dependent types with effects such as mutable refer-

ences and exceptions. After spotting the problems, we adopt the value restriction approach, which
solves these problems cleanly. We conclude with the formulation of a typed programing language
ML∀,Π,Σ0,exc,ref(C) which includes features such as references, exceptions, let-polymorphism and depen-
dent types. In other words, we have finally extended the core of ML, that is, ML without module
level constructs, with dependent types.

We describe a prototype implementation in Chapter 8, and then present in Chapter 9 some
applications of dependent types which include program error detection, array bound check elimi-
nation, redundant match elimination, etc. Lastly, we conclude and point out some directions for
future research.

Chapter 2

Preliminaries

In this chapter, we first introduce an untyped language λpat
val which is basically the call-by-value

λ-calculus extended with general pattern matching. The importance of this language lies in its
operational semantics, to which we will relate the operational semantics of other typed languages
introduced later.

We then introduce an explicitly typed language upon which we will build our type system. We
call this language ML0, which is basically mini-ML extended with pattern matching. We present
the typing rules and operational semantics for ML0 and prove important properties of ML0 such
as the type preservation theorem, which are helpful for understanding what we develop later.

Lastly, we study the operational equivalence relation in λpat
val . This will be used later when

we prove the correctness of elaboration algorithms for the languages MLΠ
0 (C) and MLΠ,Σ

0 (C) in
Chapter 4 and 5.

2.1 Untyped λ-calculus with Pattern Matching

A crucial point in many typed programming languages is that types are indifferent to program
evaluation. Roughly speaking, one can erase all the type information in a program and evaluate it
to reach the same result as one would while keeping all the type information during the evaluation.
As matter of a fact, it is a common practice in many compilers to discard all the type information in
a program after type-checking it. However, recent studies such as (Tarditi, Morrisett, Cheng, Stone,
Harper, and Lee 1996; Morrisett, Walker, Crary, and Glew 1998) have demonstrated convincingly
that this practice may not be wise because type information can be very helpful for compiler
optimization.

Nonetheless it is necessary for us to show that types do not alter the operational semantics of
programs in the various typed languages we formulate later in this thesis. For this purpose, we
introduce an untyped language λpat

val . We then define an operational semantics for λpat
val to which

the operational semantics of other typed languages will relate.
The syntax of λpat

val is given in Figure 2.1. We use x, y and f as meta variables for object
language variables, c for constructors, e for expressions, u for value forms and v for values. Value
forms are a special form of values and values are a special form of expressions. Also we use p
for patterns and we emphasize that a variable can occur at most once in a given pattern. The
signature is a list of constructors available in the language.

15

16 CHAPTER 2. PRELIMINARIES

patterns p ::= x | c | c(p) | 〈〉 | 〈p1, p2〉
matches ms ::= (p⇒ e) | (p⇒ e | ms)
expressions e ::= x | 〈〉 | 〈e1, e2〉 | c(e) | (case e of ms) | (lam x.e) | e1(e2)

| let x = e1 in e2 end | (fix f.u)
value forms u ::= c(u) | 〈〉 | 〈u1, u2〉 | (lam x.e)
values v ::= x | c(v) | 〈〉 | 〈v1, v2〉 | (lam x.e)
signatures S ::= · | S, c
substitutions θ ::= [] | θ[x 7→ e]

Figure 2.1: The syntax for λpat
val

The set FV(e) of free variables in an expression e is defined as follows.

FV(x) = {x}
FV(〈〉) = ∅
FV(c) = ∅

FV(c(e)) = FV(e)
FV(p⇒ e) = FV(e)\FV(p)

FV(p⇒ e | ms) = FV(p⇒ e) ∪ FV(ms)
FV(case e of ms) = FV(e) ∪ FV(ms)

FV(lam x.e) = FV(e)\{x}
FV(e1(e2)) = FV(e1) ∪ FV(e2)

FV(let x = e1 in e2 end) = FV(e1) ∪ (FV(e2)\{x})
FV(fix f.u) = FV(u)\{f}

Substitutions are defined in the standard way. We write e[θ] as the result of applying substitu-
tion θ to e. Since we allow substituting an expression containing free variables for a variable, we
emphasize that α-conversion is always performed if necessary to avoid capturing free variables.

We use dom(θ) for the domain of substitution θ. If x 6∈ dom(θ), we use θ[x 7→ e] for the
substitution θ′ such that dom(θ′) = dom(θ) ∪ {x} and

θ′(y) =

{
θ(y) if y is not x;
e if y is x.

We use [] for the empty substitution θ, and [x 7→ e] for the substitution θ such that dom(θ) = {x}
and θ(x) = e. Let θ1 and θ2 be two substitutions such that dom(θ1) ∩ dom(θ2) = ∅. We define
θ1 ∪ θ2, the union of θ1 and θ2, as the substitution θ such that dom(θ) = dom(θ1)∪dom(θ2) and

θ(x) =

{
θ1(x) if x ∈ dom(θ1);
θ2(x) if x ∈ dom(θ2).

Similarly, θ1 ◦θ2, the composition of θ1 and θ2, is defined as the substitution θ such that dom(θ) =
dom(θ1) ∪ dom(θ2), and

θ(x) =

{
(θ1(x))[θ2] if x ∈ dom(θ1);
θ2(x) if x ∈ dom(θ2).

2.1. UNTYPED λ-CALCULUS WITH PATTERN MATCHING 17

A substitution θ is called a value substitution if θ(x) is a value for all x ∈ dom(θ). We use e[θ] for
the result of applying θ to e and e[x1, . . . , xn 7→ e1, . . . , en] for e[x1 7→ e1, . . . , xn 7→ en].

Proposition 2.1.1 Given a value form u and an expression e, u[x 7→ e] is also a value form.
Hence, value forms are closed under substitution.

Proof This immediately follows from a structural induction on u.

Proposition 2.1.2 Given values v1 and v2, v2[x 7→ v1] is also a value. Hence, values are closed
under value substitution.

Proof This immediately follows from a structural induction on v2.

• v2 is a variable y. If y is x, then v2[x 7→ v1] = v1 is a value. Otherwise, v2[x 7→ v1] = y is also
a value.

• v2 is of form λy.e. Then v2[x 7→ v1] = λy.e[x 7→ v1] is obviously a value. Note we can assume
that there are no free occurrences of y in v1.

All other cases can be readily verified.

Therefore, a significant difference between value forms and values is that the former are closed
under all substitutions while the latter are only closed under value substitutions. This is the
primary reason why we require that u be a value form in (fix x.u). This requirement also rules
out troublesome expressions such as (fix x.x), which are of little use in practice.

2.1.1 Dynamic Semantics

We will present the operational semantics of λpat
val in terms of natural semantics (Kahn 1987). This

approach supports a short and clean formulation, but it prevents us from distinguishing a “stuck”
program from a non-terminating one. An alternative would be using the “small-step” reduction
semantics, which does enable us to distinguish a “stuck” program from a non-terminating one but
its use in our setting is more involved. We feel that natural semantics suffices for our purpose,
and therefore choose it over reduction semantics. Nonetheless, we will formulate the reduction
semantics of λpat

val when studying the operational equivalence relation in λpat
val .

Given a pattern p and a value v, a judgement of form match(p, v) =⇒ θ, which means that
matching a value v against a pattern p yields a substitution for the variables in p, can be derived
with the application of the rules in Figure 2.2. Notice that the rule (match-prod) makes sense
because p1 and p2 share no common variables.

The natural semantics for λpat
val is given in Figure 2.3. Notice the presence of the rule (ev-var),

which means that we allow the evaluation of open code, that is code containing the occurrences of
free variables. The main reason is that we hope that the theorems we prove are also applicable to
program transformation, where the manipulation of open code is a necessity.

We will use constants 0, 1,−1, . . . for integers and nil, cons for list constructors in our examples.

18 CHAPTER 2. PRELIMINARIES

match(x, v) =⇒ [x 7→ v]
(match-var)

match(〈〉, 〈〉) =⇒ []
(match-unit)

match(p1, v1) =⇒ θ1 match(p2, v2) =⇒ θ2

match(〈p1, p2〉, 〈v1, v2〉) =⇒ θ1 ∪ θ2
(match-prod)

match(c, c) =⇒ []
(match-cons-wo)

match(p, v) =⇒ θ

match(c(p), c(v)) =⇒ θ
(match-cons-w)

Figure 2.2: The pattern matching rules for λpat
val

x ↪→0 x
(ev-var)

〈〉 ↪→0 〈〉
(ev-unit)

c ↪→0 c
(ev-cons-wo)

e ↪→0 v

c(e) ↪→0 c(v)
(ev-cons-w)

e1 ↪→0 v1 e2 ↪→0 v2

〈e1, e2〉 ↪→0 〈v1, v2〉
(ev-prod)

e0 ↪→0 v0 match(v0, pk) =⇒ θ for some 1 ≤ k ≤ n ek[θ] ↪→0 v

(case e0 of (p1 ⇒ e1 | · · · | pn ⇒ en)) ↪→0 v
(ev-case)

(lam x.e) ↪→0 (lam x.e)
(ev-lam)

e1 ↪→0 (lam x.e) e2 ↪→0 v2 e[x 7→ v2] ↪→0 v

e1(e2) ↪→0 v
(ev-app)

e1 ↪→0 v1 e2[x 7→ v1] ↪→0 v2

let x = e1 in e2 end ↪→0 v2
(ev-let)

(fix f.u) ↪→0 u[f 7→ (fix f.u)]
(ev-fix)

Figure 2.3: The evaluation rules for the natural semantics of λpat
val

2.2. MINI-ML WITH PATTERN MATCHING 19

Example 2.1.3 Let D1 be the following derivation.

0 ↪→0 0
(ev-cons-wo)

nil ↪→0 nil
(ev-cons-wo)

〈0, nil〉 ↪→0 〈0, nil〉
(ev-prod)

cons(〈0, nil〉) ↪→0 cons(〈0, nil〉)

Let D2 be the following derivation.

match(x, 0) =⇒ [x 7→ 0]
(match-var)

match(xs, nil) =⇒ [xs 7→ nil]
(match-var)

match(〈x, xs〉, 〈0, nil〉) =⇒ [x 7→ 0, xs 7→ nil]
(match-prod)

match(cons(〈0, nil〉), cons(〈x, xs〉)) =⇒ [x 7→ 0, xs 7→ nil]
(match-cons-w)

Let tail = λl.case l of cons(〈x, xs〉)⇒ xs, and tail(cons(〈0, nil〉)) ↪→0 nil is derivable as follows.

tail ↪→0 tail
(ev-lam) D1

D1 D2 nil ↪→0 nil
(ev-cons-wo)

case cons(〈0, nil〉) of cons(〈x, xs〉)⇒ xs ↪→0 nil
(ev-case)

tail(cons(〈0, nil〉)) ↪→0 nil
(ev-app)

Notice that the rule (ev-case) introduces a certain amount of nondeterminism into the dynamic
semantics of λpat

val since it does not specify which matching clause is chosen if several are applicable.
On the other hand, it is specified in ML that pattern matching is done sequentially, that is, the
chosen matching clause is always the first one which is applicable. However, this difference is
relatively a minor issue since in theory we can always require that all matching clauses do not
overlap.

Theorem 2.1.4 v ↪→0 v for every value v in λpat
val .

Proof This immediately follows from a structural induction on v. We present a few cases.

• v = 〈v1, v2〉. By induction hypothesis vi ↪→0 vi are derivable for i = 1, 2. Hence we have the
following derivation.

v1 ↪→0 v1 v2 ↪→0 v2
v ↪→0 v

(ev-prod)

• v = lam x.e. Then we have the following.

v ↪→0 v
(ev-lam)

All other cases are trivial.

2.2 Mini-ML with Pattern Matching

We now introduce an explicitly typed programming language (ML0) which basically extends mini-
ML (Clément, Despeyroux, Despeyroux, and Kahn 1986) with general pattern matching. This
is a simply typed version of λpat

val . The syntax of ML0 is given in Figure 2.4. Given a context
Γ = x1 : τ1, . . . , x : τn (we omit the leading · if the context is not empty), we always assume that all
xi are distinct for i = 1, . . . , n. We write dom(Γ) = {x1, . . . , xn} and Γ(xi) = τi for i = 1, . . . , n.
A signature declares a list of constructors associated with their types. Notice that the type of a
constructor is required to be of form either β or τ → β, where β is a (user-defined) base type, that
is, a constructor is either without an argument or with exactly one argument.

20 CHAPTER 2. PRELIMINARIES

base types β ::= bool | int | (other user defined datatypes)
types τ ::= β | 1 | τ1 ∗ τ2 | τ1 → τ2

patterns p ::= x | c(p) | 〈〉 | 〈p1, p2〉
matches ms ::= (p⇒ e) | (p⇒ e | ms)
expressions e ::= x | 〈〉 | 〈e1, e2〉 | c(e) | (case e of ms) | (lam x : τ.e) | e1(e2)

| let x = e1 in e2 end | (fix f : τ.u)
value forms u ::= c(u) | 〈〉 | 〈u1, u2〉 | (lam x : τ.e)
values v ::= x | c(v) | 〈〉 | 〈v1, v2〉 | (lam x : τ.e)
contexts Γ ::= · | Γ, x : τ
signatures S ::= · | S, c : β | S, c : τ → β
substitutions θ ::= [] | θ[x 7→ e]

Figure 2.4: The syntax for ML0

x ↓ τ � x : τ
(pat-var)

〈〉 ↓ 1 � · (pat-unit)

p1 ↓ τ1 � Γ1 p2 ↓ τ2 � Γ2

〈p1, p2〉 ↓ τ1 ∗ τ2 � Γ1,Γ2
(pat-prod)

S(c) = β

c ↓ β � · (pat-cons-wo)

S(c) = τ → β p ↓ τ � Γ′

c(p) ↓ β � Γ′
(pat-cons-w)

Figure 2.5: The typing rules for patterns in ML0

2.2.1 Static Semantics

Given a pattern p and a type τ , we can derive a judgement of form p ↓ τ � Γ with the rules in
Figure 2.5, which reads that checking pattern p against type τ yields a context Γ.

In the following examples, we assume that intlist is a base type and nil, cons are constructors
of type intlist and int ∗ intlist→ intlist, respectively.

Example 2.2.1 The following is a derivation of cons(〈x, nil〉) ↓ intlist � x : int.

S(cons) = int ∗ intlist→ intlist

x ↓ int � x : int
(pat-var)

S(nil) = intlist

nil ↓ intlist � · (pat-cons-wo)

〈x, nil〉 ↓ int ∗ intlist � x : int
(pat-prod)

cons(〈x, nil〉) ↓ intlist � x : int
(pat-cons-w)

The typing rules for ML0 are given in Figure 2.6. We present an example of type inference in

2.2. MINI-ML WITH PATTERN MATCHING 21

Γ(x) = τ

Γ ` x : τ
(ty-var)

S(c) = β

Γ ` c : β
(ty-cons-wo)

S(c) = τ → β Γ ` e : τ
Γ ` c(e) : δ

(ty-cons-w)

Γ ` 〈〉 : 1
(ty-unit)

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` 〈e1, e2〉 : τ1 ∗ τ2
(ty-prod)

p ↓ τ1 � Γ′ Γ,Γ′ ` e : τ2

Γ ` p⇒ e : τ1 ⇒ τ2
(ty-match)

Γ ` p⇒ e : τ1 ⇒ τ2 Γ ` ms : τ1 ⇒ τ2

Γ ` (p⇒ e | ms) : τ1 ⇒ τ2
(ty-matches)

Γ ` e : τ1 Γ ` ms : τ1 ⇒ τ2

Γ ` (case e of ms) : τ2
(ty-cases)

Γ, x : τ1 ` e : τ2

Γ ` (lam x : τ1.e) : τ1 → τ2
(ty-lam)

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1(e2) : τ2
(ty-app)

Γ ` e1 : τ1 Γ, x : τ1 ` e2 : τ2

Γ ` (let x = e1 in e2 end) : τ2
(ty-let)

Γ, f : τ ` u : τ
Γ ` (fix f : τ.u) : τ

(ty-fix)

Figure 2.6: The typing rules for ML0

ML0.

Example 2.2.2 The following is a derivation of · ` (lam x : int.cons(〈x, nil〉)) : int→ intlist.

S(cons) = int ∗ intlist→ intlist
x : int ` x : int

S(nil) = intlist

x : int ` nil : intlist
(ty-cons-wo)

x : int ` 〈x, nil〉 ` int ∗ intlist (ty-prod)

x : int ` cons(〈x, nil〉) : intlist
(ty-cons-w)

· ` (lam x : int.cons(〈x, nil〉)) : int→ intlist
(ty-lam)

Given Γ,Γ′ and θ, a judgement of form Γ ` θ : Γ′ can be derived with the application of the
following rules. Such a judgement means that dom(θ) = dom(Γ′) and Γ ` θ(x) : Γ′(x) is derivable
for all x ∈ dom(θ).

Γ ` [] : · (subst-empty) Γ ` θ : Γ′ Γ ` e : τ
Γ ` θ[x 7→ e] : Γ′, x : τ

(subst-var)

22 CHAPTER 2. PRELIMINARIES

The next proposition shows that judgement Γ ` θ : Γ′ has the intended meaning.

Proposition 2.2.3 We have the following.

1. If Γ ` θ : Γ′ is derivable, then dom(θ) = dom(Γ′) and Γ ` θ(x) : Γ′(x) is derivable for every
x ∈ dom(θ).

2. Given θ1 and θ2 such that dom(θ1) ∩ dom(θ2) = ∅, then the following rule is admissible.

Γ ` θ1 : Γ1 Γ ` θ2 : Γ2

Γ ` θ1 ∪ θ2 : Γ1,Γ2
(subst-subst)

Proof (1) follows from a structural induction on the derivation of Γ ` θ : Γ′ and (2) follows from
a structural induction on the derivation of Γ ` θ2 : Γ2. We present the proof for (2).

• θ2 = []. This is trivial.

• θ2 = θ′2[x 7→ e]. Suppose Γ2 = Γ′2, x : τ . Then we have the following derivation.

Γ ` θ′2 : Γ′2 Γ ` x : τ
Γ ` θ′2[x 7→ e] : Γ′2, x : τ

(subst-var)

By induction hypothesis, Γ ` θ1 ∪ θ′2 : Γ1,Γ′2 is derivable. This leads to the following
derivation.

Γ ` θ1 ∪ θ′2 : Γ1,Γ′2 Γ ` x : τ
Γ ` (θ1 ∪ θ′2)[x 7→ e] : Γ1,Γ′2, x : τ

(subst-var)

Since θ1 ∪ θ2 is (θ1 ∪ θ′2)[x 7→ e] and Γ2 is Γ′2, x : τ , we are done.

Lemma 2.2.4 If both Γ,Γ′ ` e : τ and Γ ` θ : Γ′ are derivable, then Γ ` e[θ] : τ is derivable.

Proof The proof follows from a structural induction on the derivation D of Γ,Γ′ ` e : τ . We
present a few cases.

Γ(x) = τ
D =

Γ,Γ′ ` x : τ Then x 6∈ dom(Γ′). Since dom(θ) = dom(Γ′) by Proposition 2.2.3, x 6∈
dom(θ). This implies x[θ] = x. Clearly, Γ ` x : τ is derivable.

Γ′(x) = τ
D =

Γ,Γ′ ` x : τ Since dom(θ) = dom(Γ′) by Proposition 2.2.3, x ∈ dom(θ). This implies
x[θ] = θ(x). Note Γ ` θ(x) : τ is derivable by Proposition 2.2.3 since Γ ` θ : Γ′ is.

Γ,Γ′, x : τ1 ` e1 : τ2
D =

Γ,Γ′ ` (lam x : τ1.e1) : τ1 → τ2 Then we can derive Γ, x : τ1,Γ′ ` e1 : τ2 and Γ, x :
τ1 ` θ : Γ′. By induction hypothesis, Γ, x : τ1 ` e1[θ] : τ2 is derivable, and this leads to the
following derivation.

Γ, x : τ1 ` e1[θ] : τ2

Γ ` (λx : τ1.e1[θ]) : τ2
(ty-lam)

2.2. MINI-ML WITH PATTERN MATCHING 23

(lam x : τ.e) ↪→0 (lam x : τ.e)
(ev-lam)

e1 ↪→0 (lam x : τ.e) e2 ↪→0 v2 e[x 7→ v2] ↪→0 v

e1(e2) ↪→0 v
(ev-app)

(fix f : τ.u) ↪→0 u[f 7→ (fix f : τ.u)]
(ev-fix)

Figure 2.7: Some evaluation rules for the natural semantics of ML0

Note x 6∈ dom(Γ′) = dom(θ). Since Γ ` θ : Γ′, x 6∈ FV(θ(y)) for all y ∈ dom(θ). Therefore,
(λx : τ1.e1)[θ] = λx : τ1.e1[θ].

All other cases can be handled similarly.

If a value v matches a pattern p, then match(p, v) =⇒ θ is derivable for some substitution θ.
The next lemma shows that if the type of v is given, then the type of θ(x) for every x ∈ dom(θ)
is fixed. This is crucial to proving the type preservation theorem for ML0.

Lemma 2.2.5 If Γ ` v : τ , p ↓ τ � Γ′ and match(p, v) =⇒ θ are derivable, then Γ ` θ : Γ′ is
derivable.

Proof By a structural induction on the derivation D of p ↓ τ�Γ′. We present one case as follows.

match(p1, v1) =⇒ θ1 match(p2, v2) =⇒ θ2
D =

match(〈p1, p2〉, 〈v1, v2〉) =⇒ θ1 ∪ θ2 By induction hypothesis, Γ ` θi : Γi are
derivable for i = 1, 2. Hence we have the following derivation since (subst-subst) is an
admissible rule by Proposition 2.2.3.

Γ ` θ1 : Γ1 Γ ` θ2 : Γ2

Γ ` θ1 ∪ θ2 : Γ1,Γ2
(subst-subst)

All other cases are trivial.

2.2.2 Dynamic Semantics

The natural semantics of ML0 is almost the same as that of λpat
val . The only changes are made in

the formulation of the rules in Figure 2.7, where types are carried around during evaluation. All
other rules are unchanged.

Notice that types play no rôle in the formulation of the evaluation rules in Figure 2.7. To make
this precise, we define a type erasure function | · | as follows, which maps an expression in ML0 into

24 CHAPTER 2. PRELIMINARIES

one in λpat
val .

|x| = x
|c| = c

p⇒ e	= p⇒	e				
(p⇒ e	ms)	= p⇒	e			ms
case e of ms	= case	e	of	ms		
lam x : τ.e	= lam x.	e				

|e1(e2)| = |e1|(|e2|)
|let x = e1 in e2 end| = let x = |e1| in |e2| end

|fix f : τ.u| = fix f.|u|

Theorem 2.2.6 Given an expression e in ML0, we have the following.

1. If e ↪→0 v is derivable in ML0, then |e| ↪→0 |v| is derivable in λpat
val .

2. if |e| ↪→0 v0 is derivable in λpat
val , then e ↪→0 v is derivable in ML0 for some v such that

|v| = v0.

Proof (1) and (2) follow from a structural induction on the derivations of e ↪→0 v and |e| ↪→0 v0,
respectively.

Theorem 2.2.6 clearly exhibits the indifference of types to evaluation. However, one great advantage
of imposing a type system on a language is that we are then able to prove certainly invariant
properties about the evaluation of well-typed expressions.

2.2.3 Soundness

We are now ready to present the type preservation theorem for ML0, which asserts that the evalu-
ation rules for the natural semantics of ML0 does not alter the types of the evaluated expressions.
Notice that this theorem is closely related to but different from the subject reduction theorem (not
presented in the thesis), which asserts that the (small-step) reduction semantics of ML0 is type
preserving.

The type preservation theorem is a fundamental theorem which relates the static semantics of
ML0, expressed in the form of type inference rules, to the dynamic semantics of ML0, expressed in
the form of natural semantics.

Since we allow the evaluation of open code, the formulation of the following type preservation
theorem is slightly different from the standard one, which deals with only closed code and therefore
needs no variable context to keep track of free variables in the code.

Theorem 2.2.7 (Type preservation for ML0) Given e, v where e ↪→0 v is derivable. If Γ ` e : τ is
derivable then Γ ` v : τ is also derivable.

Proof This follows from a structural induction on the derivation D of e ↪→0 v. We present a few
cases.

D =
x ↪→0 x Trivially, Γ ` x : τ is derivable since Γ ` x : τ is derivable.

2.2. MINI-ML WITH PATTERN MATCHING 25

e0 ↪→0 v0 match(pk, v0) =⇒ θ for some 1 ≤ k ≤ n ek[θ] ↪→0 v
D =

(case e0 of (p1 ⇒ e1 | · · · | pn ⇒ en)) ↪→0 v Then we have a deriva-
tion of the following form since Γ ` (case e0 of (p1 ⇒ e1 | · · · | pn ⇒ en)) : τ is derivable.

Γ ` e0 : τ1 Γ ` (p1 ⇒ e1 | · · · | pn ⇒ en) : τ1 ⇒ τ

Γ ` (case e0 of (p1 ⇒ e1 | · · · | pn ⇒ en)) : τ
(ty-case)

By induction hypothesis, Γ ` v0 : τ1 is derivable. Notice Γ ` pi ⇒ ei : τ1 ⇒ τ are derivable
for 1 ≤ i ≤ n. Hence pk ↓ τ1 � Γ′ is derivable for some Γ′ and Γ,Γ′ ` ek : τ is derivable.
By Lemma 2.2.5, Γ ` θ : Γ′ is derivable. This leads to a derivation of Γ ` ek[θ] : τ by
Lemma 2.2.4. By induction hypothesis, Γ ` v : τ is derivable.

e1 ↪→0 (lam x : τ1.e
′
1) e2 ↪→0 v2 e′1[x 7→ v2] ↪→0 v

D =
e1(e2) ↪→0 v Since Γ ` e1(e2) : τ is derivable, we

have a derivation of the following form.

Γ ` e1 : τ1 → τ Γ ` e2 : τ1

Γ ` e1(e2) : τ
(ty-app)

By induction hypothesis, both Γ ` (λx : τ1.e
′
1) : τ1 → τ and Γ ` v2 : τ1 are derivable.

Hence, Γ ` e′1[x 7→ v2] : τ is derivable following Lemma 2.2.4. Again by induction hypothesis,
Γ ` v : τ is derivable.

e1 ↪→0 v1 e2[x 7→ v1] ↪→0 v
D =

(let x = e1 in e2 end) ↪→0 v Since Γ ` let x = e1 in e2 end : τ is derivable, we have
a derivation of the following form.

Γ ` e1 : τ1 Γ, x : τ1 ` e2 : τ
Γ ` let x = e1 in e2 end : τ

(ty-let)

By induction hypothesis, Γ ` v1 : τ1 is derivable. Therefore, Γ ` e2[x 7→ v1] : τ is derivable
following Lemma 2.2.4. This yields that Γ ` v : τ is derivable by induction hypothesis.

D =
(fix f : τ.u) ↪→0 u[f 7→ (fix f : τ.u)] Since Γ ` (fix f : τ.u) : τ is derivable, we have a

derivation of the following form.

Γ, f : τ ` u : τ
Γ ` (fix f : τ.u) : τ

(ty-fix)

Hence, Γ ` u[f 7→ (fix f : τ.u)] : τ is derivable following Lemma 2.2.4.

All other cases can be handled similarly.
Notice that in the case where e is let x = e1 in e2 end, the derivation of Γ ` e2[x 7→ v1] : τ

can be more complex that that of Γ, x : τ1 ` e2 : τ . Therefore, the proof could not have succeeded
if we had proceeded by a structural induction on the derivation of Γ ` e : τ .

26 CHAPTER 2. PRELIMINARIES

2.3 Operational Equivalence

We present some basics on operational equivalence in this section, which will be used later in
Chapter 4 and Chapter 5 to prove the correctness of elaboration algorithms. This is also an
appropriate place for us to mention something about the reduction semantics since it is based on
the notion of evaluation context that we introduce as follows.

Definition 2.3.1 We present the definition of evaluation contexts and (general) contexts as fol-
lows.

(evaluation contexts) E ::= [] | 〈E, e〉 | 〈v,E〉 | c(E) | case E of ms
| E(e) | v(E) | let x = E in e end

(match contexts) Cm ::= p⇒ C | (p⇒ e | Cm) | (p⇒ C | ms)
(contexts) C ::= [] | 〈C, e〉 | 〈e, C〉 | c(C) | case C of ms | case e of Cm

| lam x.(C) | C(e) | e(C)
| let x = C in e end | let x = e in C end | fix f.C

Given a context C and an expression e, C[e] stands for the expression formulated by replacing
with e the hole [] in C. We emphasize that this replacement is variable capturing . For instance,
given C = lam x.[], then C[x] = lam x.x. Given two contexts C1 and C2, C1[C2] is the context
formulated by replacing with C2 the hole [] in C1.

Proposition 2.3.2 We have the following.

1. Given two evaluation contexts E1 and E2, E1[E2] is also an evaluation context.

2. Given an evaluation context E and a value v, E[x 7→ v] is also an evaluation context.

3. Given an evaluation context E and an expression e, no free variables in e are captured when
the hole [] in E is replaced with e.

Proof (1) simply follows from a structural induction on E1. We present a few cases.

• E1 = []. Then E1[E2] = E2 is an evaluation context.

• E1 = let x = E′1 in e end. Then E′1[E2] is an evaluation context by induction hypothesis.
Hence, E1[E2] = let x = E′1[E2] in e end is also an evaluation context

• E1 = case E′1 of ms. Then E′1[E2] is an evaluation context by induction hypothesis. Hence,
E1[E2] = case E′1[E2] of ms is also an evaluation context

The rest of the cases can be handled similarly.
We omit the proofs of (2) and (3), which are based on a structural induction on E.

Definition 2.3.3 We define as follows redexes and their reductions on the left-hand and right-hand
sides of 7→, respectively.

(lam x.e)(v) 7→ e[x 7→ v]
let x = v in e end 7→ e[x 7→ v]

fix f.u 7→ u[f 7→ (fix f.u)]
case v of (p1 ⇒ e1 | · · · | pn ⇒ en) 7→ ek[θ],
where match(v, pk) =⇒ θ is derivable for some 1 ≤ k ≤ n

2.3. OPERATIONAL EQUIVALENCE 27

The one-step reduction relation 7→ is defined as follows. e1 7→ e2 if and only if e1 = E[e] for some
evaluation context E and redex e and e2 = E[e′], where e′ is the reduction of e. We also say e1

evaluates to e2 in one step if e1 7→ e2.

Notice that the relation 7→ is context-sensitive, that is, we cannot in general infer C[e] 7→ C[e′]
even if we have e 7→ e′. However, this is true by Proposition 2.3.2 if C is an evaluation context.
Let 7→∗ be the reflexive and transitive closure of 7→. The reduction semantics of λpat

val states that e
evaluates to v if e 7→∗ v holds. We point out that a redex of form case v of ms may have different
reductions. Therefore, this reduction semantics contains a certain amount of nondeterminism.

Clearly, Proposition 2.3.2 implies E[e] 7→∗ E[e′] if e 7→∗ e′. We will use this property implicitly
in the following presentation. The next theorem relates ↪→0 and 7→∗ to each other.

Proposition 2.3.4 We have the following.

1. If e is not a value, neither is E[e].

2. If e = E[r] for some redex r and e = E1[e1] for some e1 which is not a value, then e1 = E2[r]
for some E2 and E = E1[E2].

3. If E1[r1] = E2[r2] for redexes r1 and r2, then E1 = E2 and r1 = r2.

4. If e = E[e1] 7→∗ v, then there is some value v1 such that e = E[e1] 7→∗ E[v1] 7→∗ v.

Proof (1) simply follows from the definition of values. We now proceed to prove (2) by a
structural induction on E1.

• E1 = []. Then this is trivial.

• E1 = 〈E′1, e2〉. Then e = 〈E′1[e1], e2〉. Since e1 is not a value, (1) implies that E′1[e1] is not a
value. So E must be of form 〈E′, e2〉. By induction hypothesis, e1 = E2[r] for some E2 such
that E′ = E′1[E2]. Note E1[E2] = 〈E′1[E2], e2〉 = 〈E′, e2〉 = E, and we are done.

• E1 = 〈v,E′1〉. If E is of form 〈E′, e2〉, then v = E′[r]. Since this contradicts (1), E must
be of form 〈v,E′〉. By induction hypothesis, e1 = E2[r] for some E2 such that E′ = E′1[E2]
Therefore, E = E1[E2], and this concludes the case.

The rest of the cases can be treated similarly. (3) and (4) immediately follow from (2).

Clearly, Proposition 2.3.4 (3) implies that if e can be reduced then there exist a unique evaluation
context E and a redex r such that e = E[r]. However, r may have different reductions if r is of
form case v of ms.

Theorem 2.3.5 Given an expression e and a value v in λpat
val , e ↪→0 v if and only if e 7→∗ v

Proof We write e1 7→n e2 to mean that e1 evaluates to e2 in n steps. Assume e 7→n v. We
prove e ↪→0 v by an induction on n and the structure of e, lexicographically ordered. We do a case
analysis on the structure of e.

28 CHAPTER 2. PRELIMINARIES

• e = 〈e1, e2〉. By Proposition 2.3.4 (4), there exists 0 ≤ i, j ≤ n such that e1 7→i v1 and
e2 7→j v2 for some v1 and v2. By induction hypothesis, we can derive e1 ↪→0 v1 and e2 ↪→0 v2.
This yields the following.

e1 ↪→0 v1 e2 ↪→0 v2
e ↪→0 v

(ev-prod)

• e = e1(e2). Then there exists 0 ≤ i, j < n such that e1 7→i v1 and e2 7→ v2 for some v1 and
v2, where v1 is of form lam x.e′1. Hence we have the following.

e 7→ · · · 7→ (lam x.e′1)(v2) 7→ e′1[x 7→ v2] 7→ · · · 7→ v

By induction hypothesis, e1 ↪→0 lam x.e′1, e2 ↪→0 v2 and e′1[x 7→ v2] ↪→0 v are derivable. This
yields the following.

e1 ↪→0 lam x.e′1 e2 ↪→0 v2 e′1[x 7→ v2] ↪→0 v
e ↪→0 v

(ev-app)

• e = fix f.u. Then e 7→ u[f 7→ (fix f.u)]. Clearly, we have the following.

e ↪→0 u[f 7→ (fix f.u)]
(ev-fix)

All other cases can be treated similarly.
We now assume that e ↪→0 v is derivable and prove e 7→∗ v by a structural induction on the

derivation D of e ↪→0 v. We present a few cases.

e1 ↪→0 v1 e2 ↪→0 v2
D =

〈e1, e2〉 ↪→0 〈v1, v2〉 By induction hypothesis, We have e1 7→∗ v1 and e2 7→∗ v2. This
yields the following since both 〈[], e2〉 and 〈v1, []〉 are evaluation contexts.

e = 〈e1, e2〉 7→∗ 〈v1, e2〉 7→∗ 〈v1, v2〉

e0 ↪→0 v0 match(v0, pk) =⇒ θ for some 1 ≤ k ≤ n ek[θ] ↪→0 v
D =

(case e0 of (p1 ⇒ e1 | · · · | pn ⇒ en)) ↪→0 v By induction hypothesis,
we have e0 7→∗ v0 and ek[θ] 7→∗ v. This leads to the following.

case e0 of (p1 ⇒ e1 | · · · | pn ⇒ en) 7→∗ case v0 of (p1 ⇒ e1 | · · · | pn ⇒ en) 7→ ek[θ] 7→∗ v

e1 ↪→0 (lam x.e′1) e2 ↪→0 v2 e′1[x 7→ v2] ↪→0 v
D =

e1(e2) ↪→0 v By induction hypothesis, we have e1 7→∗

(lam x.e′1), e2 7→∗ v2 and e′1[x 7→ v2] 7→∗ v. This leads to the following.

e = e1(e2) 7→∗ (lam x.e′1)(e2) 7→∗ (lam x.e′1)(v2) 7→ e′1[x 7→ v2] ↪→0 v

All other cases can be treated similarly.

We will present elaboration algorithms in Chapter 4 and Chapter 5, which map a program
written in an external language into one in an internal language. We will have to show that the
elaboration of a program preserves its operational semantics. For this purpose, we introduce the
notion of operational equivalence in λpat

val .

2.3. OPERATIONAL EQUIVALENCE 29

Definition 2.3.6 Given two expression e1 and e2 in λpat
val , e1 is operationally equivalent to e2 if

the following holds.

• Given any context C, C[e1] 7→∗ 〈〉 is derivable if and only if C[e2] 7→∗ 〈〉 is.

We write e1
∼= e2 if e1 is operationally equivalent to e2.

Clearly ∼= is an equivalence relation. Our aim is to show that let x = e in E[x] end is operationally
equivalent to E[e] for any evaluation context E containing no free occurrences of x. However, this
seemingly easy task turns out to be tricky. We will explain the need for the following definition in
the proof of Lemma 2.3.11.

Definition 2.3.7 The extended values and extended evaluation contexts are defined as follows.

(extended values) w := x | c(w) | 〈〉 | 〈w1, w2〉 | (lam x.e) | (fix f.u)
(extended evaluation contexts) F := [] | 〈F, e〉 | 〈w,F 〉 | c(F) | case F of ms

| F (e) | w(F) | let x = F in e end

e1 7→F e2 if e1 = F [e] for some F and redex e and e2 = F [e′], where e′ is the reduction of e. Let
7→∗F be the reflexive and transitive closure of 7→F .

Clearly, the difference between extended values and values is that expression of form fix f.u belongs
the former but not latter. Informally speaking, it allows us to treat an expression of form fix f.u
as a value when an extended evaluation context is formulated. However, fix f.u should not be
regarded as a value when a redex is formulated. For instance, (lam x.x)(fix f.u) is not a redex.

Unlike the evaluation contexts, the extended evaluation contexts do not enjoy Proposition 2.3.4
(3). For instance, given e = Fix(I(I)), where Fix = fix f.lam x.f(x) and I = (lam x.x), e can
be reduced in one step to (lam x.F ix(x))(I(I)) or to (fix f.lam x.f(x))(I). The next proposition
states some relation between values (evaluation contexts) and extended values (extended evaluation
contexts).

Proposition 2.3.8 We have the following.

1. Given any extended value w, w 7→∗ v for some value v.

2. Given any extended evaluation context F and expression e, F [e] 7→∗ E[e] for some evaluation
context E, where E is determined by F .

Proof (1) follows from a structural induction on w. We present an interesting case.

• w is of form fix f.u. Then w 7→ u[f 7→ w]. Since u[f 7→ w] is a value, we are done.

We prove (2) by a structural induction on F . Here are a few cases.

• F is of form w(F1). Then by induction hypothesis F1[e] 7→∗ E1[e] for some E1. By (1),
w 7→∗ v for some v. Hence, we have

F [e] = w(F1[e]) 7→∗ v(F1[e]) 7→∗ v(E1[e]) = E[e]

for E = v(E1).

30 CHAPTER 2. PRELIMINARIES

• F is of form let x = F1 in e1 end. By induction hypothesis, F1[e] 7→∗ E1[e] for some E1.
Hence, we have

F [e] = let x = F1[e] in e1 end 7→∗ let x = E1[e] in e1 end = E[e]

for E = let x = E1 in e1 end.

All other cases can be treated similarly.

We now relate 7→F to 7→. Clearly, e1 7→ e2 implies e1 7→F e2 since an evaluation context is an
extended evaluation context. In the other direction, we have the following.

Lemma 2.3.9 Given an expression e and a value v in λpat
val , if e 7→∗F v then e 7→∗ v.

Proof Assume e 7→n
F v and we proceed by an induction on n. If n = 0 then it is trivial.

Assume e = F [e1] 7→F F [e′1] 7→∗F v for some F , where e1 is a redex and e′1 is its reduction. By
induction hypothesis, F [e′1] 7→∗ v. Note that F [e1] 7→∗ E[e1] and F [e′1] 7→∗ E[e′1] for some E by
Proposition 2.3.8 (2). This leads to

e = F [e1] 7→∗ E[e1] 7→ E[e′1] 7→∗ v

Therefore, the operational semantics of λpat
val is not affected even if we treat expressions of form

fix f.u as values when formulating evaluation contexts.

Definition 2.3.10 A βF -redex r is an expression of form let x = e in F [x] end, where there are
no free occurrences of x in F . e1 →βF e2 if e1 is of form C[r] for some βF -redex r = let x =
e in F [x] end and e2 = C[F [e]]. We write →∗βF for the reflexive and transitive closure of →βF

Lemma 2.3.11 Suppose e1 →βF e2. We have the following.

1. If e1 7→F e′1, then for some e′2, e2 7→0/1
F e′2 and e′1 →∗βF e′2, where e2 7→0/1

F e′2 means either
e2 = e′2 or e2 7→F e

′
2.

2. If e2 7→F e
′
2, then either e1 7→F e2 or for some e′1, e1 7→F e

′
1 and e′1 →∗βF e

′
2.

Proof For (1), we proceed by a structural induction on e1.

• e1 is of form (fix f.u1). Then e2 = (fix f.u2) for some u2 such that u1 →βF u2. Note
e′1 = u1[f 7→ e1]. Let e′2 = u2[f 7→ e2], then e2 7→F e′2. If r is a βF -redex in u1, then we
observe that r[f 7→ e1] is a βF -redex in e′1. This is exactly the case which would not go
through if we had not defined the notion of extended evaluation context.

With this observation, it is not difficult to see that e′1 →∗βF e
′
2.

All other cases can be handled similarly.
For (2), we also proceed by a structural induction on e1.

• e1 = let x = w in F [x] end. Then there are several subcases.

2.3. OPERATIONAL EQUIVALENCE 31

– e1 →βF let x = w′ in F [x] end = e2, where w →βF w′. We have e1 7→F F [w] →βF

F [w′] and e2 7→F F [w′]. So e′2 = F [w′]. Let e′1 = F [w], and we are done.

– e1 →βF F [w] = e2. Then e1 7→F e2.

– e1 →βF let x = w in F ′[x] end = e2, where F [x]→βF F
′[x]. We have e1 7→F F [w]→βF

F ′[w] and e2 7→F F
′[w]. So e′2 = F ′[w]. Let e′1 = F [w] and we are done.

All other cases can be treated similarly.

Lemma 2.3.12 Let e1 and e2 be two expressions in λpat
val such that e1 →∗βF e2. We have the

following.

1. If e1 7→∗F v1 for some value v1, then e2 7→∗F v2 for some value v2 such that v1 →∗βF v2.

2. If e2 7→∗F v2 for some value v2, then e1 7→∗F v1 for some value v1 such that v1 →∗βF v2.

Proof Assume e1 7→n
F v1. We prove (1) by induction on n.

1. n = 0. Then this is trivial.

2. n > 0. Then e1 7→F e′1 7→∗F v1 for some e′1. Then by Proposition 2.3.11 (1), there exists e′2
such that e2 7→0/1

F e′2 and e′1 →∗βF e′2. By induction hypothesis, e′2 7→∗F v2 for some value v2

such that v1 →∗βF v2.

Assume e2 7→n
F v2. We now prove (2) by induction on n.

1. n = 0. Then e1 →m
βF

e2 = v2 for some m. It is straightforward to prove that e1 7→∗F v1 for
some v1 such that v1 →∗βF v2 by induction on m.

2. n > 0. Then e2 7→F e′2 7→∗F v2 for some e′2. Then by Proposition 2.3.11 (2), we have two
cases.

• e1 7→F e2. Then e1 7→∗F v2. Hence, let v1 = v2 and we are done.

• e1 7→F e
′
1 for some e′1 such that e′1 →∗βF e

′
2. By induction hypothesis, e′1 7→∗F v1 for some

value v1 such that v1 →∗βF v2.

Therefore, both (1) and (2) hold.

Corollary 2.3.13 For every extended evaluation context F and every expression e in λpat
val ,

let x = e in F [x] end ∼= F [e]

holds if x has no occurrences in F .

Proof Notice let x = e in F [x] end is a βF -redex. Hence, we have

C[let x = e in F [x] end]→βF C[F [e]].

Suppose C[let x = e in F [x] end] 7→∗ 〈〉. Then C[F [e]] 7→ v follows from Proposition 2.3.12
(1) such that 〈〉 7→∗ v. Hence v = 〈〉.

32 CHAPTER 2. PRELIMINARIES

Suppose C[F [e]] 7→∗ 〈〉. Then C[let x = e in F [x] end] 7→ v follows from Proposition 2.3.12
(2) such that v 7→∗ 〈〉. This implies v = 〈〉 since v is a value.

Therefore, let x = e in F [x] end ∼= F [e] by the definition of operational equivalence.

Since an evaluation context is an extended evaluation context, we have derive the following
operational equivalence for every evaluation context E in which there are no occurrences of x.

let x = e in E[x] end ∼= E[e]

This equivalence will still hold after we extend the language with effects such as references and
exceptions, although we will no longer present a proof.

Lastly, we list some properties which can be proven similarly.

Proposition 2.3.14 we have the following.

1. (lam x.(lam y.e)(x)) ∼= (lam y.e).

2. (fix f.u) ∼= u[f 7→ (fix f.u)].

3. let x = w in e end ∼= e[x 7→ w].

The need for introducing extended values and extended evaluation contexts stems from the
adoption of the rule (ev-fix) in which the non-value (fix f.u) is substituted for a variable f , which
is regarded as a value. We now suggest two non-standard alternatives to coping with this problem.

1. The first alternative is that we classify variables into two categories. One category contains
the variables which are regarded as values and the other category contains the variables which
are not regarded as values. The variables bound by lam must be in the first category and the
variables bound by fix must belong to the second one. This avoids substituting non-values
for variables which are regarded as values.

2. The second alternative is to replace the rule (ev-fix) with the following evaluation rules.
This readily guarantees that only values can be substituted for variables.

(fix f.u) ↪→0 u[f 7→ u∗]

where u∗ = u[f 7→ (fix f.u)]. This strategy is clearly justified by Proposition 2.3.14 (2).

2.4 Summary

We started with λpat
val , a untyped λ-calculus with general pattern matching. The importance of

λpat
val lies in its operational semantics, which is given in the style of natural semantics. We then

introduced ML0, the typed version of λpat
val . An important observation at this point is that types

play no rôle in program evaluation. As we shall see, this property will be kept valid in all the typed
languages that we introduce later in this thesis.

However, we emphasize that recent studies (Tarditi, Morrisett, Cheng, Stone, Harper, and Lee
1996; Morrisett, Walker, Crary, and Glew 1998) have convincingly shown that the use of types can
be very helpful for detecting errors in compiler writing and enhance the performance of compiled

2.4. SUMMARY 33

code. We will actually demonstrate in Chapter 9 that dependent types can indeed lead to more
efficient code.

In addition, we studied the operation equivalence relation in λpat
val , which will be used later to

prove the correctness of some type-checking algorithms. We are now ready to introduce dependent
types into ML0.

34 CHAPTER 2. PRELIMINARIES

Chapter 3

Constraint Domains

Our enriched language will be parameterized over a constraint domain, from which the type index
objects are drawn. Typical examples of constraints include linear equalities and inequalities over
integers, equations over the algebraic terms (also called the Herbrand domain), first-order logic
formulas over a finite domain, etc. Much of the work in this chapter is inspired and closely related
to the CLP (Constraint Logic Programming) languages presented in (Jaffar and Maher 1994).

3.1 The General Constraint Language

We emphasize that the general constraint language itself is typed. In order to avoid potential
confusion we call the types in the constraint language index sorts. We use b for base index sorts
such as o for propositions and int for integers. A signature Σ declares a set of function symbols
and associates with every function symbol an index sort defined below. A Σ-structure D consists
of a set dom(D) and an assignment of functions to the function symbols in Σ.

We use f for interpreted function symbols, p for atomic predicates (that is, functions of sort
γ → o) and we assume we have constants such as equality, truth values > and ⊥, conjunction ∧,
and disjunction ∨, all of which are interpreted as usual.

index sorts γ ::= b | 1 | γ1 ∗ γ2 | {a : γ | P}
index propositions P ::= > | ⊥ | p(i) | P1 ∧ P2 | P1 ∨ P2

Here {a : γ | P} is the subset index sort for those elements of index sort γ satisfying proposition
P , where P is an index proposition. For instance, nat is an abbreviation for {a : int | a ≥ 0}, that
is, nat is a subset index sort of int.

We use a for index variables in the following formulation. We assume that there exists a
predicate .= of sort γ ∗ γ → o for every index sort γ, which is interpreted as equality. Also we
emphasize that all function symbols declared in Σ must be associated with index sorts of form
γ → b or b. In other words, the constraint language is first-order.

index objects i, j ::= a | f(i) | 〈〉 | 〈i, j〉 | fst(i) | snd(i)
index contexts φ ::= · | φ, a : γ | φ, P
index constraints Φ ::= i

.= j | > | Φ1 ∧ Φ2 | P ⊃ Φ | ∀a : γ.Φ | ∃a : γ.Φ
index substitutions θ ::= [] | θ[a 7→ i]
satisfiability relation φ |= Φ

35

36 CHAPTER 3. CONSTRAINT DOMAINS

An index variable can be declared at most once in an index context. The domain of an index
context is defined as follows.

dom(·) = ∅ dom(φ, a : γ) = dom(φ) ∪ {a} dom(φ, P) = dom(φ)

Also φ(a) = γ for every a ∈ dom(φ) if a : γ is declared in φ. A judgement of the form φ ` θ : φ′

can be derived with the use of the following rules.

φ ` [] : · (subst-iempty)

φ ` θ : φ′ φ ` i : γ
φ ` θ[a 7→ i] : φ′, a : γ

(subst-ivar)

φ ` θ : φ′ φ |= P [θ]
φ ` θ : φ′, P

(subst-prop)

Proposition 3.1.1 If φ ` θ : φ′ is derivable, then dom(θ) = dom(φ′) and φ ` θ(a) : φ′(a) is
derivable for every a ∈ dom(θ).

Proof This simply follows from a structural induction on the derivation of φ ` θ : φ′, parallel to
that of Proposition 2.2.3.

We present the sort formation and sorting rules for type index objects in Figure 3.1. We explain
the meanings of these judgements as follows. A judgement of form ` φ[ictx] means that φ is a
valid index context, and a judgement of form φ ` γ : ∗s means that γ is a valid sort under φ, and
a judgement of form φ ` i : γ means that i is of sort γ under φ. Since the constraint language is
explicitly sorted, sort-checking can be done straightforwardly following the presented sorting rules.
Details on sort-checking, which involves constraint satisfaction, can be found in Subsection 4.2.6.

We could certainly allow any first-order logic formula to be a constraint. However, in practice,
we often consider a subset of formulas closed under the above definition to be constraints. We use
L for a class of Σ-formulas (constraints), and we call the pair 〈D,L〉 a constraint domain, where
D is a Σ-structure. Sometimes, we simply use C for a constraint domain.

We define (φ)Φ as follows.

(·)Φ = Φ
(a : b)Φ = ∀a : b.Φ
(a : γ1 ∗ γ2)Φ = (a1 : γ1)(a2 : γ2)Φ[a 7→ 〈a1, a2〉]
(φ, {a : γ | P})Φ = (φ)(a : γ)(P ⊃ Φ)
(φ, P)Φ = (φ)(P ⊃ Φ)

We say that φ |= Φ is satisfiable in C = 〈D,L〉 if (φ)Φ is true in D in the model-theoretic sense,
that is, the interpretation of (φ)Φ in D is true.

We also present some basic rules for reasoning about the satisfiability of φ |= Φ as follows. Note
that there also exist other rules such as induction and model checking, which are associated with
certain special constraint domains.

3.1. THE GENERAL CONSTRAINT LANGUAGE 37

` ·[ictx]
(ictx-empty)

` φ[ictx] φ ` γ : ∗s
` φ, a : γ[ictx]

(ictx-ivar)

` φ[ictx]
φ ` b : ∗s

(sort-base)

` φ[ictx]
φ ` 1 : ∗s

(sort-unit)

φ ` γ1 : ∗s φ ` γ2 : ∗s
φ ` γ1 ∗ γ2 : ∗s

(sort-prod)

φ ` γ : ∗s φ, a : γ ` P : o
φ ` {a : γ | P} : ∗s

(sort-subset)

` φ[ictx] φ(a) = γ

φ ` a : γ
(index-var)

` φ[ictx]
φ ` 〈〉 : 1

(index-unit)

φ ` i1 : γ1 φ ` i2 : γ2

φ ` 〈i1, i2〉 : γ1 ∗ γ2
(index-prod)

φ ` i : γ1 ∗ γ2

φ ` fst(i) : γ1
(index-first)

φ ` i : γ1 ∗ γ2

φ ` snd(i) : γ2
(index-second)

φ ` a1 : {a2 : γ | P}
φ ` a1 : γ

(index-var-subset)

φ ` i : γ φ, a : γ ` P : o φ |= P [a 7→ i]
φ ` i : {a : γ | P} (index-subset)

Σ(f) = b

φ ` f : b
(index-cons)

Σ(f) = γ → b φ ` i : γ
φ ` f(i) : b

(index-fun)

Figure 3.1: The sort formation and sorting rules for type index objects

38 CHAPTER 3. CONSTRAINT DOMAINS

φ |= Φ1 φ |= Φ2

φ |= Φ1 ∧ Φ2
(sat-conj)

φ, P |= Φ
φ |= P ⊃ Φ

(sat-impl)

φ, a : γ |= Φ
φ |= ∀a : γ.Φ

(sat-forall)
φ |= Φ[a 7→ i] φ ` i : γ

φ |= ∃a : γ.Φ
(sat-exists)

Clearly, these rules are not enough. We have to be able to verify the derivability of a satisfiability
relation of form φ |= P . We say that φ |= P is derivable in a constraint domain C = 〈D,L〉 if (φ)P
is satisfiable in dom(D). In order to verify whether (φ)P is satisfiable in D, one may use some
special methods associated with C such as model-checking for finite domains. We can readily prove
that (φ)Φ is satisfiable if φ |= Φ is derivable. This establishes the soundness of this approach to
solving constraints. Clearly, this may not be a complete approach. For instance, even if ∃a : γ.Φ is
satisfiable in dom(D), there may not exist an index i expressible in the constraint language such
that Φ[a 7→ i] is satisfiable. Also, the special methods employed to verify the the satisfiability of
(φ)P may not be complete.

Proposition 3.1.2 We have the following.

1. If both φ |= P and φ, P |= Φ are derivable, then φ |= Φ is derivable.

2. If both φ ` i : γ and φ, a : γ |= Φ are derivable, then φ |= Φ[a 7→ i] is also derivable.

3. If both φ ` θ : φ′ and φ, φ′ |= Φ are derivable, then φ |= Φ[θ] is also derivable.

Proof All these are straightforward.

Note that the rule (sat-exists) is not syntax-directed. This could be a serious problem which
hinders the efficiency of a constraint solver. In Subsection 4.2.6, we will introduce a procedure
which eliminates existential variables in the constraints generated during type-checking. In the
prototype implementation, we simply reject a constraint if some existential quantifiers in it cannot
be eliminated. The practical significance of this decision is to make constraint solving as feasible
as possible for typical use. Another important reason is that this can significantly help generate
comprehensible error messages as our experience indicates.

Not much of our development depends on the precise form of the constraint domain, except
that the constructs above must be present in order to reduce dependent type-checking to constraint
satisfaction. For example, implication P ⊃ Φ is necessary to express constraints arising from
pattern matching. Though subset sorts {a : γ | P} are not strictly required in the formulation of
the type system, they are crucial to making the system expressive enough for practical use.

3.2 A Constraint Domain over Algebraic Terms

We present a constraint domain over algebraic terms. In the signature Σalg of this domain, a
declaration is of form f : b1 ∗ · · · ∗ bn → b. If it is preferred to have an unsorted constraint domain,
then one can assume that there is only one base sort term, which stands for the sort of all terms.

Let us present an interesting example, in which the type index objects are drawn from Σalg.
We use the following datatype to represent pure untyped lambda-terms in de Bruijn’s notation.

3.2. A CONSTRAINT DOMAIN OVER ALGEBRAIC TERMS 39

a ∈ dom(φ0)
· |=[φ0] a .= a

· |=[φ0] i1
.= j1 · · · · |=[φ0] in

.= jn

· |=[φ0] f(i1, . . . , in) .= f(j1, . . . , jn)

· |=[φ0] P1

· |=[φ0] P1 ∨ P2

· |=[φ0] P2

· |=[φ0] P1 ∨ P2

P1 |=[φ0] P2

· |=[φ0] P1 ⊃ P2

P1, P2, φp |=[φ0] P
P1 ∧ P2, φp |=[φ0] P

i1
.= j1, . . . , in

.= jn, φp |=[φ0] P
f(i1, . . . , in) .= f(j1, . . . , jn), φp |=[φ0] P

φp[a 7→ i] |=[φ0] P [a 7→ i]
a
.= i, φp |=[φ0] P

φp[a 7→ i] |=[φ0] P [a 7→ i]
i
.= a, φp |=[φ0] P

P1, φp |=[φ0] P P2, φp |=[φ0] P
P1 ∨ P2, φp |=[φ0] P

· |=[φ0, a : b] P
· |=[φ0] ∀a : b.P

Figure 3.2: The rules for satisfiability verification

datatype lambda_term = One | Shift of lambda_term |
Abs of lambda_term |
App of lambda_term * lambda_term

Suppose that there is a base sort level, and the following function symbols are declared in Σalg.

zero : level and next : level→ level

This enables us to refine the datatype lambda_term into the following dependent type.

typeref lambda_term of level
with One <| {l:level} lambda_term(next(l))

| Shift <| {l:level} lambda_term(l) -> lambda_term(next(l))
| Abs <| {l:level} lambda_term(next(l)) -> lambda_term(l)
| App <| {l:level} lambda_term(l) * lambda_term(l) -> lambda_term(l)

Roughly speaking, if the de Bruijn’s notation of a λ-term is of type lambda_term(l), where
l = next(· · · (zero) · · ·) contains n occurrences of next, then there are at most n free variables in
the λ-term. Therefore, the type of all closed λ-terms is lambda_term(zero).

This is a very simple constraint domain. Given φ and P , the rules in Figure 3.2 can be used
verify if (φ)P is satisfiable. Notice that φ0 and φp are index contexts of forms a1 : b1, . . . , an : bn
and P1, . . . , Pn, respectively. We say that (φ)P is satisfiable if · |=[·] (φ)P is derivable. It is clear
that Σalg should not to be fixed so that the programmer can then be allowed to declare the sorts of
function symbols. The simple reason for this is that the rules for satisfiability verification in this

40 CHAPTER 3. CONSTRAINT DOMAINS

domain are not effected by such declarations. The following is a sample derivation.

· |=[a : level, b : level] b .= b

a
.= b |=[a : level, b : level] a .= b

next(a) .= next(b) |=[a : level, b : level] a .= b

· |=[a : level, b : level] next(a) .= next(b) ⊃ a .= b

· |=[a : level] ∀(b : level).next(a) .= next(b) ⊃ a .= b

· |=[·] ∀(a : level)∀(b : level).next(a) .= next(b) ⊃ a .= b

Lastly, we remark that if disequations are allowed in this constraint domain then the rules for
satisfiability verification can be extended straightforwardly.

3.3 A Constraint Domain over Integers

We present an integer constraint domain in this section. The signature of the domain is given
in Figure 3.3. We also list some sample constraints in Figure 3.4, which are generated during
type-checking the binary search program in Figure 1.3.

Unfortunately, there exist no practical constraint solving algorithms for this constraint domain
in its full generality. This poses a very serious problem since our objective is to design a depen-
dent type system for general purpose practical programming. In Subsection 4.2.6, a procedure
is introduced to eliminate existential quantifiers in constraints generated during type-checking.
We currently simply reject a constraint if some existential quantifiers in it cannot be eliminated.
Therefore, the constraints which are finally passed to a constraint solver consist of only linear
inequalities, for which there exist practical solvers.

3.3.1 A Constraint Solver for Linear Inequalities

When all existential variables have been eliminated (Subsection 4.2.6) and the resulting constraints
collected, we check them for linearity. We currently reject non-linear constraints rather than
postponing them as hard constraints (Michaylov 1992), which is planned for future work. If the
constraints are linear, we negate them and test for unsatisfiability. Our technique for solving linear
constraints is mainly based on Fourier-Motzkin variable elimination (Dantzig and Eaves 1973), but
there are many other methods available for this purpose such as the SUP-INF method (Shostak
1977) and the well-known simplex method. We have chosen Fourier-Motzkin’s method mainly for
its simplicity.

We now briefly explain this method. We use x for integer variables, a for integers, and l for
linear expressions. Given a set of inequalities S, we would like to show that S is unsatisfiable. We
fix a variable x and transform all the linear inequalities into one of the forms l ≤ ax or ax ≤ l
for a ≥ 0. For every pair l1 ≤ a1x and a2x ≤ l2, where a1, a2 > 0, we introduce a new inequality
a2l1 ≤ a1l2 into S, and then remove from S all the inequalities involving x. Clearly, this is a sound
but incomplete procedure. If x were a real variable, then the elimination would also be complete.

In order to handle modular arithmetic, we also perform another operation to rule out non-
integer solutions: we transform an inequality of form

a1x1 + · · ·+ anxn ≤ a

3.3. A CONSTRAINT DOMAIN OVER INTEGERS 41

Σint = abs : int→ int
sgn : int→ int
succ : int→ int
pred : int→ int
∼ : int→ int
+ : int ∗ int→ int
− : int ∗ int→ int
∗ : int ∗ int→ int

div : int ∗ int→ int
min : int ∗ int→ int
max : int ∗ int→ int
mod : int ∗ int→ int
< : int ∗ int→ o
≤ : int ∗ int→ o
= : int ∗ int→ o
≥ : int ∗ int→ o
> : int ∗ int→ o
6= : int ∗ int→ o

Figure 3.3: The signature of the integer domain

∀h : int.∀l : nat.∀size : nat.(0 ≤ h+ 1 ≤ size ∧ 0 ≤ l ≤ size ∧ h ≥ l) ⊃ (l + (h− l)/2) ≤ size
∀h : int.∀l : nat.∀size : nat.(0 ≤ h+ 1 ≤ size ∧ 0 ≤ l ≤ size ∧ h ≥ l) ⊃ 0 ≤ l + (h− l)/2− 1 + 1
∀h : int.∀l : nat.∀size : nat.(0 ≤ h+ 1 ≤ size ∧ 0 ≤ l ≤ size ∧ h ≥ l) ⊃ l + (h− l)/2− 1 + 1 ≤ size
∀h : int.∀l : nat.∀size : nat.(0 ≤ h+ 1 ≤ size ∧ 0 ≤ l ≤ size ∧ h ≥ l) ⊃ 0 ≤ l + (h− l)/2 + 1
∀h : int.∀l : nat.∀size : nat.(0 ≤ h+ 1 ≤ size ∧ 0 ≤ l ≤ size ∧ h ≥ l) ⊃ l + (h− l)/2 + 1 ≤ size

Figure 3.4: Sample constraints

42 CHAPTER 3. CONSTRAINT DOMAINS

into
a1x1 + · · ·+ anxn ≤ a′,

where a′ is the largest integer such that a′ ≤ a and the greatest common divisor of a1, . . . , an
divides a′. This is used in type-checking an optimized byte copy function in Section A.5.

The above elimination method can be extended to be both sound and complete while remaining
practical (see, for example, (Pugh and Wonnacott 1992; Pugh and Wonnacott 1994)). We hope to
use such more sophisticated methods which still appear to be practical, although we have not yet
found the need to do so in the context of our current experiments.

3.3.2 An Example

We show how the following constraint is solved with the above approach.

∀h : int.∀l : nat.∀size : nat.(0 ≤ h+ 1 ≤ size ∧ 0 ≤ l ≤ size ∧ h ≥ l) ⊃ l + (h− l)/2 + 1 ≤ size

The first step is to negate the constraint and transform it into the following form.

l ≥ 0 size ≥ 0 0 ≤ h+ 1 h+ 1 ≤ size l ≤ size h ≥ l l + (h− l)/2 + 1 > size

Then we replace (h− l)/2 with D and add h− l− 1 ≤ 2D ≤ h− l into the set of linear inequalities.
We now test for the unsatisfiability of the following set of linear inequalities.

l ≥ 0 size ≥ 0 0 ≤ h+ 1 h+ 1 ≤ size l ≤ size h ≥ l
h− l − 1 ≤ 2D 2D ≤ h− l l +D ≥ size

We now eliminate variable size, yielding the following set of inequalities.

l ≥ 0 l +D ≥ 0 0 ≤ h+ 1 h+ 1 ≤ l +D l ≤ l +D h ≥ l
h− l − 1 ≤ 2D 2D ≤ h− l

We then eliminate variable D and generate the following set of inequalities.

l ≥ 0 − 2l ≤ h− l 0 ≤ h+ 1 2h− 2l + 2 ≤ h− l 0 ≤ h− l h ≥ l h− l − 1 ≤ h− l

If we eliminate variable h at this stage, the inequality l ≤ l− 1 is then produced, which leads to a
contradiction. Therefore, the original constraint has been verified.

The Fourier variable elimination method can be expensive in practice. We refer the reader to
(Pugh and Wonnacott 1994) for a detailed analysis on this issue. However, we feel that this method
is intuitive and therefore can facilitate informative type error message report if some constraints
can not be verified.

We have observed that an overwhelming majority of the constraints gathered in practice are
trivial ones and can be solved with a sound and highly efficient (but incomplete) constraint solver
such as one based on the simplex method for reals. Therefore, a promising strategy is to use such
an efficient constraint solver to filter out trivial constraints and then use a sound and complete
(but relatively slow) constraint solver to handle the rest of the constraints.

3.4. SUMMARY 43

3.4 Summary

In this chapter, we have presented a general constraint language in which constraint domains can
be constructed. It will soon be clear that the dependent type system that we develop parameterizes
over a given constraint domain. The ability to find a practical constraint solver for a constraint
domain is crucial to making type-checking feasible in the dependent type system parameterizing
over it.

At this moment, there is no mechanism to allow the user to define a constraint solver for
a declared constraint domain. Some study on formulating such a mechanism can be found in
(Frühwirth 1992). Also there is a great deal of study on how to define constraint solvers and make
them more efficient in the constraint logic programming community, and (Jaffar and Maher 1994)
is an excellent source to draw inspiration from.

44 CHAPTER 3. CONSTRAINT DOMAINS

Chapter 4

Universal Dependent Types

In this chapter we enrich the type system of ML0 with universal dependent types, yielding a
language MLΠ

0 (C), where C is some fixed constraint domain. We then present the typing rules
and operational semantics for MLΠ

0 (C) and prove some crucial properties, which include the type
preservation theorem and the relation between the operational semantics of MLΠ

0 (C) and that of
ML0. Also we prove that MLΠ

0 (C) is a conservative extension of ML0.
In order to make MLΠ

0 (C) a practical programming language, we design an external language
DML0(C) for MLΠ

0 (C). We address the issue of unobtrusiveness of programming in DML0(C)
through an elaboration mapping which maps a program in DML0(C) into one in MLΠ

0 (C). We then
prove the correctness of the elaboration. This elaboration process, which reduces type-checking a
program into constraint satisfaction, accounts for a major contribution of the thesis. Finally, we
use a concrete example to illustrate the elaboration in full details since it is a considerably involved
process.

This extension primarily serves as the core of the language that we will eventually develop, and
it also demonstrates cleanly the language design approach we take for making dependent types
available in practical programming.

4.1 Universal Dependent Types

We now present MLΠ
0 (C), which is an extension of ML0 with universal dependent types. Given

a constraint domain C, the syntax of MLΠ
0 (C) is given in Figure 4.1. We use δ for base type

families, where we use δ(〈〉) for an unindexed type. Type and context formation rules are listed in
Figure 4.2. A judgement of form φ ` τ : ∗ means that τ is a well-formed type under index context
φ, and a judgement of form φ ` Γ[ctx] means that Γ is a well-formed context under φ. Notice that
a major type is a type which does not begin with a quantifier.

The domains of Γ and φ are defined as usual. Note that every substitution θ can be thought
of as the union of two substitutions θφ and θΓ, where dom(θφ) contains only index variables and
dom(θΓ) contains only (ordinary) variables.

We do not specify here how new type families or constructor types are actually declared,
but assume only that they can be processed into the form given above. Our implementation
provides indexed refinement of datatype declarations as shown in Section 1.1. The syntax for such
declarations will be mentioned in Chapter 8.

45

46 CHAPTER 4. UNIVERSAL DEPENDENT TYPES

families δ ::= (family of refined datatypes)
signature S ::= ·S | S, δ : γ → ∗

| S, c : Πa1 : γ1 . . .Πan : γn.δ(i)
| S, c : Πa1 : γ1 . . .Πan : γn.τ → δ(i)

major types µ ::= δ(i) | 1 | (τ1 ∗ τ2) | (τ1 → τ2)
types τ ::= µ | (Πa : γ.τ)
patterns p ::= x | c[a1] . . . [an] | c[a1] . . . [an](p) | 〈〉 | 〈p1, p2〉
matches ms ::= (p⇒ e) | (p⇒ e | ms)
expressions e ::= x | 〈〉 | 〈e1, e2〉 | c[i1] . . . [in] | c[i1] . . . [in](e)

| (case e of ms) | (lam x : τ.e) | e1(e2)
| let x = e1 in e2 end | (fix f : τ.u)
| (λa : γ.e) | e[i]

value forms u ::= c[i1] . . . [in] | c[i1] . . . [in](u) | 〈〉 | 〈u1, u2〉
| (lam x : τ.e) | (λa : γ.u)

values v ::= x | c[i1] . . . [in] | c[i1] . . . [in](v) | 〈〉 | 〈v1, v2〉
| (lam x : τ.e) | (λa : γ.v)

contexts Γ ::= · | Γ, x : τ
index contexts φ ::= · | φ, a : γ | φ, P
substitutions θ ::= [] | θ[x 7→ e] | θ[a 7→ i]

Figure 4.1: The syntax for MLΠ
0 (C)

S(δ) = γ → ∗ φ ` i : γ
φ ` δ(i) : ∗ (type-datatype)

φ ` τ1 : ∗ φ ` τ2 : ∗
φ ` τ1 ⇒ τ2 : ∗ (type-match)

` φ[ictx]
φ ` 1 : ∗ (type-unit)

φ ` τ1 : ∗ φ ` τ2 : ∗
φ ` 〈τ1, τ2〉 : ∗ (type-prod)

φ ` τ1 : ∗ φ ` τ2 : ∗
φ ` τ1 → τ2 : ∗ (type-fun)

φ, a : γ ` τ
φ ` Πa : γ.τ

(type-pi)

φ ` ·[ctx]
(ctx-empty)

φ ` Γ[ctx] φ ` τ : ∗
φ ` Γ, x : τ [ctx]

(ctx-var)

Figure 4.2: The type formation rules for ML0

4.1. UNIVERSAL DEPENDENT TYPES 47

x ↓ τ � (·;x : τ)
(pat-var)

〈〉 ↓ 1 � (·; ·) (pat-unit)

p1 ↓ τ1 � (φ1; Γ1) p2 ↓ τ2 � (φ2; Γ2)
〈p1, p2〉 ↓ τ1 ∗ τ2 � (φ1, φ2; Γ1,Γ2)

(pat-prod)

S(c) = Πa1 : γ1 . . .Πan : γn.δ(i)
c[a1] . . . [an] ↓ δ(j) � (a1 : γ1, . . . , an : γn, i

.= j; ·) (pat-cons-wo)

S(c) = Πa1 : γ1 . . .Πan : γn.(τ → δ(i)) p ↓ τ � (φ; Γ)
c[a1] . . . [an](p) ↓ δ(j) � (a1 : γ1, . . . , an : γn, i

.= j, φ; Γ)
(pat-cons-w)

Figure 4.3: Typing rules for patterns

4.1.1 Static Semantics

We start with the typing rules for patterns, which are listed in Figure 4.3. The judgment p ↓
τ � (φ; Γ) expresses that the index and ordinary variables in pattern p have the types declared in
φ and Γ, respectively, if we know that p must have type τ .

We write φ |= τ ≡ τ ′ for the congruent extension of φ |= i
.= j from index objects to types,

which is determined by the following rules.

φ |= i
.= j

φ |= δ(i) ≡ δ(j)
φ |= τ1 ≡ τ ′1 φ |= τ2 ≡ τ ′2
φ |= τ1 ∗ τ2 ≡ τ ′1 ∗ τ ′2

φ |= τ ′1 ≡ τ1 φ |= τ2 ≡ τ ′2
φ |= τ1 → τ2 ≡ τ ′1 → τ ′2

φ, a : γ |= τ ≡ τ ′

φ |= Πa : γ.τ ≡ Πa : γ.τ ′

Proposition 4.1.1 If both φ ` θ : φ′ and φ, φ′ |= τ1 ≡ τ2 are derivable, then φ |= τ1[θ] ≡ τ2[θ] is
also derivable.

Proof This simply follows from a structural induction on the derivation of φ |= τ1 ≡ τ2, with the
application of Proposition 3.1.2 (3).

We now present the typing rules for MLΠ
0 (C) in Figure 4.4. We require that there be no free

occurrences of a in Γ(x) for every x ∈ dom(Γ) when the rule (ty-ilam) is applied. Also note that
one premise φ ` τ2 : ∗ of the rule (ty-match) enforces that all index variables in τ are declared in
φ. The rule (ty-cons-wo) applies only if c is a constructor without an argument. If c is with one
argument, the rule (ty-cons-w) applies.

Proposition 4.1.2 (Inversion) If φ; Γ ` e : τ is derivable, then the last inference rule of any
derivation of φ; Γ ` e : τ is either (ty-eq) or uniquely determined by the structure of e.

Proof By an inspection of all the typing rules in Figure 4.4.

This proposition will be frequently used to do structural induction on typing derivations since it
allows us to determinate the last applied rule in such derivations.

48 CHAPTER 4. UNIVERSAL DEPENDENT TYPES

φ; Γ ` e : τ1 φ |= τ1 ≡ τ2

φ; Γ ` e : τ2
(ty-eq)

φ ` Γ[ctx] Γ(x) = τ

φ; Γ ` x : τ
(ty-var)

S(c) = Πa1 : γ1 . . .Πan : γn.δ(i) φ ` i1 : γ1 · · · φ ` in : γn φ ` Γ[ctx]
φ; Γ ` c[i1] . . . [in] : δ(i[a1, . . . , an 7→ i1, . . . , in])

(ty-cons-wo)

S(c) = Πa1 : γ1 . . . an : γn.τ → δ(i)
φ ` i1 : γ1 · · · φ ` in : γn φ; Γ ` e : τ [a1, . . . , an 7→ i1, . . . , in]

φ; Γ ` c[i1] . . . [in](e) : δ(i[a1, . . . , an 7→ i1, . . . , in])
(ty-cons-w)

φ ` Γ[ctx]
φ; Γ ` 〈〉 : 1

(ty-unit)

φ; Γ ` e1 : τ1 φ; Γ ` e2 : τ2

φ; Γ ` 〈e1, e2〉 : τ1 ∗ τ2
(ty-prod)

p ↓ τ1 � (φ′; Γ′) φ, φ′; Γ,Γ′ ` e : τ2 φ ` τ2 : ∗
φ; Γ ` p⇒ e : τ1 ⇒ τ2

(ty-match)

φ; Γ ` (p⇒ e) : τ1 ⇒ τ2 φ; Γ ` ms : τ1 ⇒ τ2

φ; Γ ` (p⇒ e | ms) : τ1 ⇒ τ2
(ty-matches)

φ; Γ ` e : τ1 φ; Γ ` ms : τ1 ⇒ τ2

φ; Γ ` (case e of ms) : τ2
(ty-case)

φ, a : γ; Γ ` e : τ
φ; Γ ` (λa : γ.e) : (Πa : γ.τ)

(ty-ilam)

φ; Γ ` e : Πa : γ.τ φ ` i : γ
φ; Γ ` e[i] : τ [a 7→ i]

(ty-iapp)

φ; Γ, x : τ1 ` e : τ2

φ; Γ ` (lam x : τ1.e) : τ1 → τ2
(ty-lam)

φ; Γ ` e1 : τ1 → τ2 φ; Γ ` e2 : τ1

φ; Γ ` e1(e2) : τ2
(ty-app)

φ; Γ ` e1 : τ1 φ; Γ, x : τ1 ` e2 : τ2

φ; Γ ` let x = e1 in e2 end : τ2
(ty-let)

φ; Γ, f : τ ` u : τ
φ; Γ ` (fix f : τ.u) : τ

(ty-fix)

Figure 4.4: Typing Rules for MLΠ
0 (C)

4.1. UNIVERSAL DEPENDENT TYPES 49

match(x, v) =⇒ [x 7→ v]
(match-var)

match(〈〉, 〈〉) =⇒ []
(match-unit)

match(p1, v1) =⇒ θ1 match(p2, v2) =⇒ θ2

match(〈p1, p2〉, v) =⇒ θ1 ∪ θ2
(match-prod)

match(c[a1] . . . [an], c[i1] . . . [in]) =⇒ [a1 7→ i1, . . . , an 7→ in] ∪ []
(match-cons-wo)

match(p, v) =⇒ θ

match(c[a1] . . . [an](p), c[i1] . . . [in](v)) =⇒ [a1 7→ i1, . . . , an 7→ in] ∪ θ (match-cons-w)

Figure 4.5: The pattern matching rules for MLΠ
0 (C)

Next we turn to the operational semantics. Matching a pattern p against a value v yields a
substitution θ, whose domain includes both index and ordinary variables, written as the judgment
match(p, v) =⇒ θ.

Given Γ, φ,Γ′, φ′ and θ, a judgement of form φ; Γ ` θ : (φ′; Γ′) can be derived through the
application of the following rules.

φ; Γ ` [] : (·; ·) (subst-empty)

φ; Γ ` θ : (φ′; Γ′) φ; Γ ` e : τ
φ; Γ ` θ[x 7→ e] : (φ′; Γ′, x : τ)

(subst-var)

φ; Γ ` θ : (φ′; Γ′) φ ` i : γ
φ; Γ ` θ[a 7→ i] : (φ′, a : γ; Γ′)

(subst-ivar)

φ; Γ ` θ : (φ′; Γ′) φ, φ′ ` P : o φ |= P [θ]
φ; Γ ` θ : (φ′, P ; Γ′)

(subst-iprop)

The meaning of a judgement of form φ; Γ ` θ : (φ′; Γ′) is given in the proposition below.

Proposition 4.1.3 If φ; Γ ` θ : (φ′; Γ′) is derivable, then

dom(Γ′) = dom(θΓ) and dom(φ′) = dom(θφ),

and φ |= P [θ] is derivable for every index proposition P declared in φ′.

Proof This directly follows from a structural induction on the derivation φ; Γ ` θ : (φ′; Γ′).

Lemma 4.1.4 (Substitution) If φ, φ′; Γ,Γ′ ` e : τ and φ; Γ ` θ : (φ′; Γ′) are derivable, then
φ; Γ ` e[θ] : τ [θ] is derivable.

Proof This follows from a structural induction on the derivation D of φ, φ′; Γ,Γ′ ` e : τ , parallel
to the proof of Lemma 2.2.4. We present some cases.

50 CHAPTER 4. UNIVERSAL DEPENDENT TYPES

φ, φ′; Γ,Γ′ ` e : τ1 φ, φ′ |= τ1 ≡ τ2
D =

φ, φ′; Γ,Γ′ ` e : τ2 By induction hypothesis, φ; Γ ` e[θ] : τ1[θ] is deriv-
able. Clearly, φ ` θφ : φ′ is also derivable, and this implies that φ |= τ1[θφ] ≡ τ2[θφ] is
derivable. We then have the following.

φ; Γ ` e[θ] : τ1[θφ] φ |= τ1[θφ] ≡ τ2[θφ]
φ; Γ ` e[θ] : τ2[θφ]

(ty-eq)

By the definition of θφ, τi[θφ] = τi[θ] for i = 1, 2. This concludes the case.

φ, φ′; Γ,Γ′ ` e1 : τ1 φ, φ′; Γ,Γ′ ` e2 : τ2
D =

φ, φ′; Γ,Γ′ ` 〈e1, e2〉 : τ1 ∗ τ2 By induction hypothesis, φ; Γ ` ei[θ] : τi[θ] are
derivable for i = 1, 2. This leads to the following derivation.

φ; Γ ` e1[θ] : τ1[θ] φ; Γ ` e2[θ] : τ2[θ]
φ; Γ ` 〈e1[θ], e2[θ]〉 : τ1[θ] ∗ τ2[θ]

(ty-prod)

Since 〈e1, e2〉[θ] = 〈e1[θ], e2[θ]〉 and (τ1 ∗ τ2)[θ] = τ1[θ] ∗ τ2[θ], we are done.

All other cases can be handled similarly.

Lemma 4.1.5 Assume that there is no a ∈ dom(φ) which occurs in pattern p. If φ; Γ ` v : τ ,
p ↓ τ � (φ′; Γ′) and match(p, v) =⇒ θ are derivable, then φ; Γ ` θ : (φ′; Γ′) is derivable.

Proof This follows from a structural induction on the derivation D of p ↓ τ � (φ′; Γ′), parallel
to the proof of Lemma 2.2.5. Since there is no a ∈ dom(φ) which occurs in pattern p, dom(φ) ∩
dom(θφ) = ∅. We present one interesting case where v = c[a1] . . . [an](v1).

match(p1, v1) =⇒ θ1
D =

match(c[a1] . . . [an](p1), c[i1] . . . [in](v1)) =⇒ [a1 7→ i1, . . . , an 7→ in] ∪ θ1 Then the deriva-
tion of p ↓ τ � (φ′; Γ′) must be of the following form,

S(c) = Πa1 : γ1 . . .Πan : γn.(τ1 → δ(i)) p1 ↓ τ1 � (φ′1; Γ′)
c[a1] . . . [an](p1) ↓ δ(j) � (a1 : γ1, . . . , an : γn, i

.= j, φ′1; Γ′)
(pat-cons-w)

where τ = δ(j) and φ′ = a1 : γ1, . . . , an : γn, i
.= j, φ′1. By induction hypothesis, φ; Γ ` θ1 :

(φ′1; Γ′) is derivable. Let us first suppose that the derivation of φ; Γ ` v : τ1 is of the following
form,

S(c) = Πa1 : γ1 . . . an : γn.τ1 → δ(i)
φ ` i1 : γ1 · · · φ ` in : γn φ; Γ ` v1 : τ1[a1, . . . , an 7→ i1, . . . , in]

φ; Γ ` c[i1] . . . [in](v1) : δ(i[a1, . . . , an 7→ i1, . . . , in])
(ty-cons-w)

where i[a1, . . . , an 7→ i1, . . . , in] is j. Clearly, we have φ |= i[θ] .= j[θ] since

i[θ] = i[a1, . . . , an 7→ i1, . . . , in] = j = j[θ].

4.1. UNIVERSAL DEPENDENT TYPES 51

It then immediately follows that φ; Γ ` θ : (φ′; Γ′) is derivable. Note that φ; Γ ` v : τ can
also be derived as follows,

φ; Γ ` v : τ1 φ |= τ1 ≡ τ
φ; Γ ` v : τ

(ty-eq)

where τ1 = δ(j1) for some j1 and φ; Γ ` v : τ1 is derived with an application of (ty-cons-w).
Then j1 is i[a1, . . . , an 7→ i1, . . . , in]. We can infer φ |= j1

.= j from φ |= τ1 ≡ τ . This implies
φ |= i[θ] = j1

.= j = j[θ], leading to a derivation of φ; Γ ` θ : (φ′; Γ′).

All other cases can be treated similarly.

Lemma 4.1.5 is crucial to proving the type preservation theorem for MLΠ
0 (C), which is formulated

as Theorem 4.1.6.

4.1.2 Dynamic Semantics

The natural semantics of MLΠ
0 (C) is given through the rules in Figure 4.6. Note that e ↪→d v

means that e reduces to a value v in this semantics.
Notice that type indices are never evaluated. This highlights the language design decision we

have made: there exist no direct interactions between indices and code execution. The reasoning
on type indices requires constraint satisfaction done statically during type-checking.

Theorem 4.1.6 (Type preservation in MLΠ
0 (C)) Given e, v in MLΠ

0 (C) such that e ↪→d v is deriv-
able. If φ; Γ ` e : τ is derivable, then φ; Γ ` v : τ is derivable.

Proof The theorem follows from a structural induction on the derivation D of e ↪→d v and the
derivation of φ; Γ ` e : τ , lexicographically ordered. If the last rule in the derivation of φ; Γ ` e : τ
is

φ; Γ ` e : τ ′ φ ` τ ′ ≡ τ
φ; Γ ` e : τ

(ty-eq)
,

then by induction hypothesis φ; Γ ` v : τ ′ is derivable, and therefore we have the following.

φ; Γ ` v : τ ′ φ |= τ ′ ≡ τ
φ; Γ ` v : τ

(ty-eq)

This allows us to assume that the last rule in the derivation of φ; Γ ` e : τ is not (ty-eq) in the
rest of the proof. We present several cases.

e0 ↪→d v0 match(v0, pk) =⇒ θ for some 1 ≤ k ≤ n ek[θ] ↪→d v
D =

(case e0 of p1 ⇒ e1 | · · · | pn ⇒ en) ↪→d v Then by Proposition 4.1.2,
the last rule in the derivation of φ; Γ ` e : τ is of the following form.

φ; Γ ` e0 : τ0 φ; Γ ` (p1 ⇒ e1 | · · · | pn ⇒ en) : τ0 ⇒ τ

φ; Γ ` (case e0 of (p1 ⇒ e1 | · · · | pn ⇒ en)) : τ
(ty-case)

52 CHAPTER 4. UNIVERSAL DEPENDENT TYPES

x ↪→d x
(ev-var)

c[i1] . . . [in] ↪→d c[i1] . . . [in]
(ev-cons-wo)

e ↪→d v

c[i1] . . . [in](e) ↪→d c[i1] . . . [in](v)
(ev-cons-w)

〈〉 ↪→d 〈〉
(ev-unit)

e1 ↪→d v1 e2 ↪→d v2

〈e1, e2〉 ↪→d 〈v1, v2〉
(ev-prod)

e0 ↪→d v0 match(v0, pk) =⇒ θ for some 1 ≤ k ≤ n ek[θ] ↪→d v

(case e0 of (p1 ⇒ e1 | · · · | pn ⇒ en)) ↪→d v
(ev-case)

e ↪→d v

(λa : γ.e) ↪→d (λa : γ.v)
(ev-ilam)

e ↪→d (λa : γ.v)
e[i] ↪→d v[a 7→ i]

(ev-iapp)

(lam x : τ.e) ↪→d (lam x : τ.e)
(ev-lam)

e1 ↪→d (lam x : τ.e) e2 ↪→d v2 e[x 7→ v2] ↪→d v

e1(e2) ↪→d v
(ev-app)

e1 ↪→d v1 e2[x 7→ v1] ↪→d v2

(let x = e1 in e2 end) ↪→d v2
(ev-let)

(fix f : τ.u) ↪→d u[f 7→ (fix f : τ.u)]
(ev-fix)

Figure 4.6: Natural Semantics for MLΠ
0 (C)

4.1. UNIVERSAL DEPENDENT TYPES 53

Clearly, we also have the following.

pk ↓ τ0 � (φ′; Γ′) φ, φ′; Γ,Γ′ ` ek : τ φ ` τ : ∗
φ; Γ ` (pk ⇒ ek) : (τ0 ⇒ τ)

(ty-match)

By induction hypothesis, φ; Γ ` v0 : τ0 is derivable. Therefore, φ; Γ ` θ : (φ′; Γ′) is derivable
by Lemma 4.1.5. This implies that φ; Γ ` ek[θ] : τ is derivable by Lemma 4.1.4 since τ = τ [θ].
By induction hypothesis, φ; Γ ` v : τ is derivable.

e1 ↪→d v1
D =

(λa : γ.e1) ↪→d (λa : γ.v1) Then by Proposition 4.1.2, φ, a : γ; Γ ` e1 : τ1 is derivable,
where Πa : γ.τ1 = τ . By induction hypothesis, φ, a : γ; Γ ` v1 : τ1 is derivable, and this yields
the following.

φ, a : γ; Γ ` v1 : τ1

φ; Γ ` (λa : γ.v1) : (Πa : γ.τ1)
(ty-ilam)

e1 ↪→d (λa : γ.v1)
D =

e1[i] ↪→d v1[a 7→ i] Then by Proposition 4.1.2, we have a derivation of the following form,

φ; Γ ` e1 : (Πa : γ.τ1) φ ` i : γ
φ; Γ ` e1[i] : τ

(ty-iapp)

where τ = τ1[a 7→ i]. By induction hypothesis, φ; Γ ` (λa : γ.v1) : (Πa : γ.τ1) is derivable, and
this yields that φ, a : γ; Γ ` v1 : τ1 is derivable. By Lemma 4.1.4, φ; Γ ` v1[a 7→ i] : τ1[a 7→ i]
is derivable.

All other cases can be handled similarly.

We have no intention to construct an interpreter or a compiler following the natural semantics
of MLΠ

0 (C). Instead, we intend to use existing compilers of ML to compile programs written in
MLΠ

0 (C). The following index erasure function ‖·‖ is mainly introduced for this purpose. Note that
this is different from the type erasure function | · |. Roughly speaking, the index erasure function
erases everything related to type index objects, mapping MLΠ

0 (C) programs into ML0 ones.

Definition 4.1.7 The index erasure function ‖ · ‖ is defined in Figure 4.7. which maps an expres-
sion in MLΠ

0 (C) into one in ML0.

In order to justify that the index erasure function does what it is supposed to do, we have to show
that the index erasure of an MLΠ

0 (C) program behaves properly in the following sense.

1. Given an MLΠ
0 (C) program e which evaluates to v according to the natural semantics of

MLΠ
0 (C), we must verify that ‖e‖ evaluates to ‖v‖ according to the natural semantics of

ML0.

2. Given an MLΠ
0 (C) program e whose erasure ‖e‖ evaluates to v0 according to the natural se-

mantics of ML0, we must verify that e evaluates to some v according to the natural semantics
of MLΠ

0 (C) such that ‖v‖ = v0.

54 CHAPTER 4. UNIVERSAL DEPENDENT TYPES

‖1‖ = 1
‖δ(i)‖ = δ
‖Πa : γ.τ‖ = ‖τ‖
‖τ1 ∗ τ2‖ = ‖τ1‖ ∗ ‖τ2‖
‖τ1 → τ2‖ = ‖τ1‖ → ‖τ2‖
‖x‖ = x
‖c[i1] . . . [in]‖ = c
‖c[i1] . . . [in](e)‖ = c(‖e‖)
‖〈〉‖ = 〈〉
‖〈e1, e2〉‖ = 〈‖e1‖, ‖e2‖〉
‖p⇒ e | ms‖ = ‖p‖ ⇒ ‖e‖ | ‖ms‖
‖(case e of ms)‖ = (case ‖e‖ of ‖ms‖)
‖(lam x : τ.e)‖ = (lam x : ‖τ‖.‖e‖)
‖e1(e2)‖ = ‖e1‖(‖e2‖)
‖(λa : γ.e)‖ = ‖e‖
‖e[i]‖ = ‖e‖
‖let x = e1 in e2 end‖ = let x = ‖e1‖ in ‖e2‖ end
‖fix f : τ.u‖ = fix f : ‖τ‖.‖u‖
‖ · ‖ = ·
‖Γ, x : τ‖ = ‖Γ‖, x : ‖τ‖
‖ ·S ‖ = ·S
‖S, δ : γ → ∗‖ = ‖S‖, δ : ∗
‖S, c : τ‖ = ‖S‖, c : ‖τ‖
‖[]‖ = []
‖θ[a 7→ i]‖ = ‖θ‖
‖θ[x 7→ e]‖ = ‖θ‖[x 7→ ‖e‖]

Figure 4.7: The definition of erasure function ‖ · ‖

(1) and (2) will be proven as Theorem 4.1.10 and Theorem 4.1.12, respectively.

Proposition 4.1.8 We have the following.

1. ‖τ [θ]‖ = ‖τ‖ and ‖e[θ]‖ = ‖e‖[‖θ‖].

2. ‖u‖ is a value form in ML0 if u is a value form in MLΠ
0 (C).

3. ‖v‖ is a value in ML0 if v is a value in MLΠ
0 (C).

4. If p ↓ τ � (φ; Γ) is derivable, then ‖p‖ ↓ ‖τ‖� ‖Γ‖ is derivable.

5. If match(p, v) =⇒ θ is derivable in MLΠ
0 (C), then match(‖p‖, ‖v‖) =⇒ ‖θ‖ is derivable in

ML0.

4.1. UNIVERSAL DEPENDENT TYPES 55

6. Given v, p in MLΠ
0 (C) such that φ; Γ ` v : τ and p ↓ τ =⇒ (φ; Γ) are derivable. If

match(‖p‖, ‖v‖) =⇒ θ0 is derivable, then match(p, v) =⇒ θ is derivable for some θ and
‖θ‖ = θ0.

7. If φ |= τ1 ≡ τ2 is derivable, then ‖τ1‖ = ‖τ2‖.

Proof We omit the proofs of (1), (2) and (3), which are straightforward. (4) is proven by a
structural induction on the derivation D of p ↓ τ � (φ; Γ), and we present one case below. Let D
be a derivation of the following form.

S(c) = Πa1 : γ1 . . .Πan : γn.(τ → δ(i)) p ↓ τ � (φ; Γ)
c[a1] . . . [an](p) ↓ δ(j) � (a1 : γ1, . . . , an : γn, i

.= j, φ; Γ)
(pat-cons-w)

By induction hypothesis, we have the following derivation.

‖S‖(c) = ‖τ‖ → δ ‖p‖ ↓ ‖τ‖� ‖Γ‖
c(‖p‖) ↓ δ � ‖Γ‖ (pat-cons-w)

Notice that ‖c[a1] . . . [an](p)‖ = c(‖p‖), ‖δ(j)‖ = δ and

‖(a1 : γ1, . . . , an : γn, i
.= j, φ; Γ)‖ = ‖Γ‖.

Hence we are done.
(5) follows from a straightforward structural induction on the derivation D of match(p, v) =⇒

θ. We present one case below.

match(p, v) =⇒ θ
D =

match(c[a1] . . . [an](p), c[i1] . . . [in](v)) =⇒ [a1 7→ i1, . . . , an 7→ in] ∪ θ By induction hypoth-
esis, match(‖p‖, ‖v‖) =⇒ ‖θ‖. This leads to the following.

match(‖p‖, ‖v‖) =⇒ ‖θ‖
match(c(‖p‖), c(‖v‖)) =⇒ ‖θ‖ (match-cons-w)

Since ‖c[a1] . . . [an](p)‖ = c(‖p‖), ‖c[i1] . . . [in](v)‖ = c(‖v‖) and

‖[a1 7→ i1, . . . , an 7→ in] ∪ θ‖ = ‖θ‖,

we are done.

All other cases can be treated similarly.
The proof of (6) proceeds by a structural induction on the derivation of match(‖p‖, ‖v‖) =⇒ θ0,

parallel to that of (5). (7) is then proven by a structural induction on the derivation of φ |= τ1 ≡ τ2.

Theorem 4.1.9 If φ; Γ ` e : τ is derivable in MLΠ
0 (C), then ‖Γ‖ ` ‖e‖ : ‖τ‖ is derivable in ML0.

56 CHAPTER 4. UNIVERSAL DEPENDENT TYPES

Proof This simply follows from a structural induction on the derivation of φ; Γ ` e : τ .

We say that an expression e in MLΠ
0 (C) (ML0) is typable if φ; Γ ` e : τ (Γ ` e : τ) is derivable

for some φ,Γ, τ in MLΠ
0 (C) (for some Γ, τ in ML0). Also we say that an untyped expression e in

λpat
val is typable in MLΠ

0 (C) (ML0) if e is the type erasure of some typable expression in MLΠ
0 (C)

(ML0). In this sense, it is clear from Theorem 4.1.9 that there are no more expressions in λpat
val

which are typable in MLΠ
0 (C) than are typable in ML0. On the other hand, there has been a great

deal of research on designing type systems so that strictly more expressions in λpat
val are typable

in these type systems than are typable in ML0. For instance, the type system extending ML0

with let-polymorphism allows more expressions in λpat
val to be typable. In this respect, our work

is significantly different. Roughly speaking, our objective is to assign expressions more accurate
types rather than make more expressions typable.

Theorem 4.1.10 If e ↪→d v derivable in MLΠ
0 (C), then ‖e‖ ↪→0 ‖v‖ is derivable.

Proof This simply follows from a structural induction on the derivation D of e ↪→d v. We present
a few cases as follows.

e0 ↪→d v0 match(v0, pk) =⇒ θ for some 1 ≤ k ≤ n ek[θ] ↪→d v
D =

(case e0 of p1 ⇒ e1 | · · · | pn ⇒ en) ↪→d v Then by induction hypoth-
esis, ‖e0‖ ↪→0 ‖v0‖ is derivable. By Proposition 4.1.8 (5), match(‖pk‖, ‖v0‖) =⇒ ‖θ‖ is
derivable. By induction hypothesis, ‖ek‖[‖θ‖] ↪→0 ‖v‖ is derivable since ‖ek[θ]‖ = ‖ek‖[‖θ‖]
by proposition 4.1.8 (1). This leads to the following.

‖e0‖ ↪→0 ‖v0‖ match(‖v0‖, ‖pk‖) =⇒ θ for some 1 ≤ k ≤ n ‖ek‖[‖θ‖] ↪→0 ‖v‖
(case ‖e0‖ of (‖p1‖ ⇒ ‖e1‖ | · · · | ‖pn‖ ⇒ ‖en‖)) ↪→0 ‖v‖

(ev-case)

Note that ‖case e0 of p1 ⇒ e1 | · · · | pn ⇒ en‖ is

case ‖e0‖ of (‖p1‖ ⇒ ‖e1‖ | · · · | ‖pn‖ ⇒ ‖en‖),

and we are done.

e1 ↪→d v1
D =

(λa : γ.e1) ↪→d (λa : γ.v1) Then by induction hypothesis, ‖e1‖ ↪→0 ‖v1‖ is derivable.
Note that ‖(λa : γ.e1)‖ = ‖e1‖ and ‖(λa : γ.v1)‖ = ‖v1‖. Hence we are done.

e1 ↪→d (λa : γ.v1)
D =

e1[i] ↪→d v1[a 7→ i] Then by induction hypothesis, ‖e1‖ ↪→0 ‖(λa : γ.v1)‖ = ‖v1‖ is deriv-
able. Note that ‖e1[i]‖ = ‖e1‖. Also ‖v1[a 7→ i]‖ = ‖v1‖ by Proposition 4.1.8 (1). Hence, we
are done.

All the rest of the cases can be handled similarly.

Theorem 4.1.10 is a reconfirmation that type indices do not interact with program evaluation.
This is a soundness argument in the sense that we have proven that index erasure is sound with
respect to evaluation. We now prove that index erasure is also complete with respect to evaluation,
formulated as Theorem 4.1.12. The following lemma will be needed in its proof.

4.1. UNIVERSAL DEPENDENT TYPES 57

Lemma 4.1.11 Given a value v1 in MLΠ
0 (C) such that φ; · ` v1 : Πa : γ.τ is derivable, v1 must

be of form λa : γ.v2 for some value v2.

Proof This follows from a structural induction on the derivation D of φ; Γ ` v1 : (Πa : γ.τ).

φ; · ` v1 : τ1 φ |= τ1 ≡ Πa : γ.τ
D =

φ; · ` v1 : Πa : γ.τ Then τ1 must of form Πa : γ.τ ′1. By induction hypothesis,
v1 has the claimed form.

φ, a : γ; · ` v : τ
D =

φ; · ` (λa : γ.v) : (Πa : γ.τ) Then v1 is λa : γ.v, and we are done.

Note that the last applied rule in D cannot be (ty-var). Since v1 is a value, no other rules can be
the last applied rule in D. This concludes the proof.

Theorem 4.1.12 Given φ; · ` e : τ derivable in MLΠ
0 (C). If e0 = ‖e‖ ↪→0 v

0 is derivable for some
v0 in ML0, then there exists v in MLΠ

0 (C) such that e ↪→d v is derivable and ‖v‖ = v0.

Proof The theorem follows from a structural induction on the derivation of e0 ↪→0 v
0 and the

derivation D of φ; · ` e : τ , lexicographically ordered. If the last applied rule in the derivation of
φ; · ` e : τ is

φ; · ` e : τ ′ φ ` τ ′ ≡ τ
φ; · ` e : τ

(ty-eq)
,

then by induction hypothesis e ↪→d v is derivable for some v and ‖v‖ = v0. This allows us to
assume that the last applied rule in the derivation of φ; · ` e : τ is not (ty-eq) in the rest of the
proof. We present several cases.

φ; · ` e0 : τ0 φ; · ` (p1 ⇒ e1 | · · · | pn ⇒ en) : τ0 ⇒ τ
D =

φ; · ` (case e0 of (p1 ⇒ e1 | · · · | pn ⇒ en)) : τ Then the derivation of e0 ↪→0 v
0

must be of the following form.

e0
0 ↪→d v

0
0 match(v0

0, p
0
k) =⇒ θ0 for some 1 ≤ k ≤ n e0

k[θ0] ↪→d v
0

(case e0
0 of p0

1 ⇒ e0
1 | · · · | p0

n ⇒ e0
n) ↪→d v

0
(ev-case)

,

where ‖e0‖ = e0
0, ‖pk‖ = p0

k and ‖ek‖ = e0
k for all 1 ≤ k ≤ n. Clearly, we also have

pk ↓ τ0 � (φ′; Γ′) φ, φ′; ·,Γ′ ` ek : τ φ ` τ : ∗
φ; · ` pk ⇒ ek : τ0 ⇒ τ

(ty-match)
.

By induction hypothesis, e0 ↪→d v0 is derivable for some v0 and ‖v0‖ = v0
0. Hence, φ; · ` v0 : τ0

is derivable by Theorem 4.1.6. By Proposition 4.1.8 (6), match(pk, v0) =⇒ θ is derivable for
some θ and ‖θ‖ = θ0. Note e0

k[θ0] = ‖ek[θ]‖ by Proposition 4.1.8 (1) and φ; · ` θ : (φ′; Γ′) is
derivable by Lemma 4.1.5. This yields that φ; · ` ek[θ] : τ is derivable by Lemma 4.1.4. By
induction hypothesis, ek[θ] ↪→0 v is derivable for some v and ‖v‖ = v0.

58 CHAPTER 4. UNIVERSAL DEPENDENT TYPES

φ, a : γ; · ` e1 : τ
D =

φ; · ` (λa : γ.e1) : (Πa : γ.τ1) Hence we have ‖λa : γ.e1‖ = ‖e1‖ ↪→0 v
0 for some v0. By

induction hypothesis, e1 ↪→d v1 for some v1 such that ‖v1‖ = v0. Hence we have the following.
e1 ↪→d v1

λa : γ.e1 ↪→d λa : γ.v1
(ev-ilam)

Note ‖λa : γ.v1‖ = ‖v1‖ = v0, and this concludes the case.

φ; · ` e1 : Πa : γ.τ φ ` i : γ
D =

φ; · ` e1[i] : τ [a 7→ i] Then we have ‖e1[i]‖ = ‖e1‖ ↪→0 v0 for some v0. By induction
hypothesis, e1 ↪→d v1 for some v1. By Theorem 4.1.6, φ; · ` v1 : Πa : γ.τ is derivable. Notice
that v1 is of form λa : γ.v2 by Lemma 4.1.11. This leads to the following.

e1 ↪→d v1

e1[i] ↪→d v2[a 7→ i]
(ev-iapp)

Since ‖v2[a 7→ i]‖ = ‖v2‖ = ‖v1‖ = v0, we are done.

All other cases can be treated similarly.

Now we have completely justified the following evaluation strategy for MLΠ
0 (C): given a well-typed

expression e in MLΠ
0 (C), we can erase all type indices in e to obtain a well-typed expression ‖e‖ in

ML0 and then evaluate it in ML0. By Theorem 4.1.10 and Theorem 4.1.12, this yields the expected
result.

We are now at the stage to report an interesting phenomenon in MLΠ
0 (C).

Example 4.1.13 There is no closed expression e in MLΠ
0 (C) of type

Πm : nat.Πn : nat.intlist(m+ n)→ intlist(m)

such that ‖e‖(cons(〈0, nil〉)) evaluates to a value in ML0.
Suppose ‖e‖(cons(〈0, nil〉)) evaluates to v. Then by Theorem 4.1.12, there are some v1 of type

intlist(1) and v2 of type intlist(0) such that

e[1][0](cons[1](〈0, nil〉)) ↪→d v1 and e[0][1](cons[1](〈0, nil〉)) ↪→d v2

and ‖v1‖ = v = ‖v2‖. This is a contradiction since v cannot be a list of length both zero and one.
However, this does not mean that we could not define a function in MLΠ

0 (C) to be of the type
Πm : nat.Πn : nat.intlist(m+ n)→ intlist(m). As a matter of fact, the following function is
of this type.

λm : nat.λn : nat.lam x : intlist(m+ n).case x of nil⇒ nil

If we call the above expression e, then the reader can readily verify that e[1][0](cons[1](〈0, nil〉))
does not evaluates to any value.

It turns out that this kind of types can also significantly complicate the constraints generated
during an elaboration process which we will develop in the next section. The main reason lies in
that the existential variable elimination approach introduced in Subsection 4.2.6 does not cope well
with the constraints produced when such types are checked.

Since such types seem to have little practical use, we intend to find an syntactic approach to
disallowing them. This will be a future research topic.

4.2. ELABORATION 59

It is a straightforward observation on the typing rules for MLΠ
0 (C) that the following theorem

holds.

Theorem 4.1.14 MLΠ
0 (C) is a conservative extension of ML0, that is, given Γ, e, v, τ in ML0,

·; Γ ` e : τ and e ↪→d v are derivable in MLΠ
0 (C) if and only if Γ ` e : τ and e ↪→0 v are derivable

in ML0.

Proof The “if” part immediately follows from an inspection of the typing and evaluation rules for
ML0, which are all allowed in MLΠ

0 (C). We now show the “only if” part. Since e is ML0, neither
rule (ty-ilam) nor rule (ty-iapp) can be applied in the derivation of ·; Γ ` e : τ . Therefore, this
derivation can easily lead to a derivation of Γ ` e : τ in ML0. Similarly, the derivation of e ↪→d v
can readily yield a derivation of e ↪→0 v.

The novelty of our approach to enriching the type system of ML with dependent types is
precisely the introduction of a restricted form of dependent types, where type index objects and
language expressions are separated. This, however, does not prevent us from reasoning about the
values of expressions in the type system because we can introduce singleton types to relate the
value of an expression to that of an index. For example, we refine the type int into infinitely many
singleton types int(i) for i = 0, 1,−1, 2,−2, . . ., each of which contains only the integer i. If we
can type-check that an expression e is of type int(i), then we know that the run-time value of e
must equal i. This, for instance, allows us to determine at compile-time whether the value of an
expression of type int is within certain range. Please see Section 9.2 for more details on this issue.

We emphasize that both ML0 and MLΠ
0 (C) in Theorem 4.1.14 are explicitly typed internal

languages, and hence we cannot simply conclude that if the programmer does not index any types
in his programs then these programs are valid for MLΠ

0 (C) if they are valid for ML0. The obvious
reason is that the programmer almost always writes programs in an external language, which
may not be fully explicitly typed. Therefore, these programs need to be elaborated into the
corresponding explicitly typed ones in an internal language.

In order to guarantee that valid programs written in an external language for ML0 can be
successfully elaborated into explicitly typed programs in MLΠ

0 (C), we will design a two phase
type-checking algorithm in Chapter 6, achieving full compatibility.

4.2 Elaboration

We have so far presented an explicitly typed language MLΠ
0 (C). This presentation has a serious

drawback from a programmer’s point of view: one would quickly get overwhelmed with types when
programming in such a setting. It then becomes apparent that it is necessary to provide an external
language DML0(C) together with a mapping from DML0(C) to the internal language MLΠ

0 (C).
This mapping is called elaboration. Note that we also use the phrase type-checking to mean
elaboration, sometimes.

4.2.1 The External Language DML0(C) for MLΠ
0 (C)

The syntax for DML0(C) is given as follows.

60 CHAPTER 4. UNIVERSAL DEPENDENT TYPES

patterns p ::= x | c | c(p) | 〈〉 | 〈p1, p2〉
matches ms ::= (p⇒ e) | (p⇒ e | ms)
expressions e ::= x | c(e) | 〈〉 | 〈e1, e2〉

| (case e of ms) | (lam x.e) | (lam x : τ.e) | e1(e2)
| (let x = e1 in e2 end) | (fix f : τ.u) | λa : γ.e | (e : τ)

(e : τ) means that e is annotated with type τ . Type annotations in a program will be crucial to
elaboration. Also, the need for λa : γ.e is explained in Section 8.3, which is used in a very restricted
way.

Note that the syntax of DML0(C) is basically the syntax of ML0, though types here could be
dependent types. This partially attests to the unobtrusiveness of our enrichment. The type erasure
function | · | on expressions in MLΠ

0 (C) is defined in the obvious way. Again please note that | · |
is different from the index erasure function ‖ · ‖, which maps an MLΠ

0 (C) expression into an ML0

one.

4.2.2 Elaboration as Static Semantics

We illustrate some intuition behind the elaboration rules while presenting them. Elaboration, which
incorporates type checking, is defined via two mutually recursive judgments: one to synthesize a
type where this can be done in a most general way, and one to check a term against a type where
synthesis is not possible. The synthesizing judgement has the form φ; Γ ` e ↑ τ ⇒ e∗ and means
that e elaborates into e∗ with type τ . The checking judgement has the form φ; Γ ` e ↓ τ ⇒ e∗ and
means that e elaborates into e∗ against type τ . In general, we use e, p,ms for external expressions,
patterns and matches, and e∗, p∗,ms∗ for their internal counterparts.

The purpose of first two rules is to eliminate universal quantifiers. For instance, let us assume
that e1(e2) is in the code and a type of form Πa : γ.τ is synthesized for e1; then we must apply
the rule (elab-pi-elim) to remove the quantifier in the type; we continue doing so until a major
type is reached, which must be of form τ1 → τ2 (if the code is type-correct). Note that the actual
index i is not locally determined, but becomes an existential variable for the constraint solver.
The rule (elab-pi-intro-1) is simpler since we check against a given dependent functional type.
Of course, we require that there be no free occurrences of a in Γ(x) for all x ∈ dom(Γ) when
(elab-pi-intro-1) is applied.

φ; Γ ` e ↑ Πa : γ.τ ⇒ e∗ φ ` i : γ
φ; Γ ` e ↑ τ [a 7→ i]⇒ e∗[i]

(elab-pi-elim)

φ, a : γ; Γ ` e ↓ τ ⇒ e∗

φ; Γ ` e ↓ Πa : γ.τ ⇒ (λa : γ.e∗)
(elab-pi-intro-1)

The next rule is for lambda abstraction, which checks a lam-expression against a type. The
rule for the fixed point operator is similar. We emphasize that we never synthesize types for either
lam or fix-expressions (for which principal types do not exist in general).

φ; Γ, x : τ1 ` e ↓ τ2 ⇒ e∗

φ; Γ ` (lam x.e) ↓ τ1 → τ2 ⇒ (lam x : τ1.e
∗
1)

(elab-lam)

4.2. ELABORATION 61

x ↓ τ ⇒ (x; ·;x : τ)
(elab-pat-var)

〈〉 ↓ 1⇒ (〈〉; ·; ·) (elab-pat-unit)

p1 ↓ τ1 ⇒ (p∗1;φ1; Γ1) p2 ↓ τ2 ⇒ (p∗2;φ2; Γ2)
〈p1, p2〉 ↓ τ1 ∗ τ2 ⇒ (〈p∗1, p∗2〉;φ1, φ2; Γ1,Γ2)

(elab-pat-prod)

S(c) = Πa1 : γ1 . . .Πan : γn.δ(i)
c ↓ δ(j)⇒ (c[a1] . . . [an]; a1 : γ1, . . . , an : γn, i

.= j, φ; Γ)
(elab-pat-cons-wo)

S(c) = Πa1 : γ1 . . .Πan : γn.τ → δ(i) p ↓ τ ⇒ (p∗;φ; Γ)
c(p) ↓ δ(j)⇒ (c[a1] . . . [an](p∗); a1 : γ1, . . . , an : γn, i

.= j, φ; Γ)
(elab-pat-cons-w)

Figure 4.8: The elaboration rules for patterns

The next rule is for function application, where the interaction between the two kinds of judgments
takes place. After synthesizing a major type τ1 → τ2 for e1, we simply check e2 against τ1—synthesis
for e2 is unnecessary.

φ; Γ ` e1 ↑ τ1 → τ2 ⇒ e∗1 φ; Γ ` e2 ↓ τ1 ⇒ e∗2
φ; Γ ` e1(e2) ↑ τ2 ⇒ e∗1(e∗2)

(elab-app-up)

We maintain the invariant that the shape of types of variables in the context is always determined,
modulo possible index constraints which may need to be solved. This means that with the rules
above we can already check all normal forms. A term which is not in normal form will most often
be a let-expression, but in any case will require a type annotation, as illustrated in the following
one of two rules for let-expressions.

φ; Γ ` e1 ↑ τ1 ⇒ e∗1 φ; Γ, x : τ1 ` e2 ↓ τ2 ⇒ e∗2
φ; Γ ` let x = e1 in e2 end ↓ τ2 ⇒ let x = e∗1 in e∗2 end

(elab-let-down)

Even if we are checking against a type, we must synthesize the type of e1. If e1 is a function
or fixpoint, its type must be given, in practice mostly be writing let x : τ = e1 in e2 end which
abbreviates let x = (e1 : τ) in e2 end. The following rule allows us to take advantage of such
annotations.

φ; Γ ` e ↓ τ ⇒ e∗

φ; Γ ` (e : τ) ↑ τ ⇒ e∗
(elab-anno-up)

As a result, the only types appearing in realistic programs are due to declarations of functions
and a few cases of polymorphic instantiation. The latter will be explained later in Subsection 6.2.3.

Moreover, in the presence of existential dependent types, which will be introduced in Chapter 5,
a pure ML type without dependencies obtained in the first phase of type-checking is assumed if
no explicit type annotation is given. This makes our extension truly conservative in the sense that
pure ML programs will work exactly as before, not requiring any annotations.

Elaboration rules for patterns are particularly simple, due to the constraint nature of the types
for constructors. We elaborate a pattern p against a type τ , yielding an internal pattern p∗ and

62 CHAPTER 4. UNIVERSAL DEPENDENT TYPES

index context φ and (ordinary) context Γ, respectively. This is written as p ↓ τ ⇒ (p∗;φ; Γ) in
Figure 4.8. This judgment is used in the rules for pattern matching. The generated index context
φ′ are assumed into the index context φ while elaborating e as shown in the rule (elab-match)
below. For constraint satisfaction, these are treated as hypotheses.

p ↓ τ1 ⇒ (p∗;φ′; Γ′) φ, φ′; Γ,Γ′ ` e ↓ τ2 ⇒ e∗ φ ` τ2 : ∗
φ; Γ ` (p⇒ e) ↓ (τ1 ⇒ τ2)⇒ (p∗ ⇒ e∗)

(elab-match)

For instance, if the constructor cons is of type τ = Πa : nat.int ∗ intlist(a) → intlist(a+ 1),
then we have the following.

S(cons) = τ

x ↓ int⇒ (x; ·;x : int) xs ↓ intlist(a)⇒ (xs; ·;xs : intlist(a))
〈x, xs〉 ↓ int ∗ intlist(a)⇒ (〈x, xs〉; ·;x : int, xs : intlist(a))

cons(〈x, xs〉) ↓ intlist(n+ 1)⇒ (cons[a](〈x, xs〉); a : nat, a+ 1 .= n+ 1;x : int, xs : intlist(a))

Lemma 4.2.1 If p ↓ τ ⇒ (p∗;φ; Γ) is derivable, then p = ‖p∗‖ and p∗ ↓ τ � (φ; Γ) is derivable.

Proof The proof proceeds by a structural induction on the derivation of p ↓ τ ⇒ (p∗;φ; Γ). We
present some cases as follows.

p1 ↓ τ1 ⇒ (p∗1;φ1; Γ1) p2 ↓ τ2 ⇒ (p∗2;φ2; Γ2)
D =

〈p1, p2〉 ↓ τ1 ∗ τ2 ⇒ (〈p∗1, p∗2〉;φ1, φ2; Γ1,Γ2) By induction hypothesis, for i = 1, 2,
pi = ‖p∗i ‖ and p∗i ↓ τi � (φi; Γi) are derivable. Therefore, we have 〈p1, p2〉 = ‖〈p∗1, p∗2〉‖, and
we can derive 〈p∗1, p∗2〉 ↓ τ1 ∗ τ2 � (φ1, φ2; Γ1,Γ2) as follows.

p∗1 ↓ τ1 � (φ1; Γ1) p∗2 ↓ τ2 � (φ2; Γ2)
〈p∗1, p∗2〉 ↓ τ1 ∗ τ2 � (φ1, φ2; Γ1,Γ2)

(elab-pat-prod)

This concludes the case.

S(c) = Πa1 : γ1 . . .Πan : γn.τ → δ(i) p ↓ τ ⇒ (p∗;φ; Γ)
D =

c(p) ↓ δ(j)⇒ (c[a1] . . . [an](p∗); a1 : γ1, . . . , an : γn, i
.= j, φ; Γ) By induction hypothesis,

p = ‖p∗‖ and p∗ ↓ τ � (φ; Γ) is derivable. Hence, c(p) = ‖c[a1] . . . [an](p∗)‖ and the following
is derivable.

S(c) = Πa1 : γ1 . . .Πan : γn.(τ → δ(i)) p∗ ↓ τ � (φ; Γ)
c[a1] . . . [an](p∗) ↓ δ(j) � (a1 : γ1, . . . , an : γn, i

.= j, φ; Γ)
(elab-pat-cons-w)

This concludes the case.

All other cases are straightforward.

We now present the complete list of elaboration rules for MLΠ
0 (C) in Figure 4.9 and Figure 4.10.

The correctness of these rules are justified by Theorem 4.2.2.
There is a certain amount of nondeterminism in the formulation of these elaboration rules.

For instance, there is a contention between the rules (elab-pi-intro-1) and (elab-pi-intro-2)
when both of them are applicable. In this case, we always choose the former over the latter. Also

4.2. ELABORATION 63

φ; Γ ` e ↑ Πa : γ.τ ⇒ e∗ φ ` i : γ
φ; Γ ` e ↑ τ [a 7→ i]⇒ e∗[i]

(elab-pi-elim)

φ, a : γ; Γ ` e ↓ τ ⇒ e∗

φ; Γ ` e ↓ Πa : γ.τ ⇒ (λa : γ.e∗)
(elab-pi-intro-1)

φ, a : γ; Γ ` e ↓ τ ⇒ e∗

φ; Γ ` λa : γ.e ↓ Πa : γ.τ ⇒ (λa : γ.e∗)
(elab-pi-intro-2)

Γ(x) = τ φ ` Γ[ctx]
φ; Γ ` x ↑ τ ⇒ x

(elab-var-up)

φ; Γ ` x ↑ µ1 ⇒ e∗ φ |= µ1 ≡ µ2

φ; Γ ` x ↓ µ2 ⇒ e∗
(elab-var-down)

S(c) = Πa1 : γ1 . . .Πan : γn.δ(i) φ ` i1 : γ1 · · · φ ` in : γn
φ; Γ ` c ↑ δ(i[a1, . . . , an 7→ i1, . . . in])⇒ c[i1] . . . [in]

(elab-cons-wo-up)

φ; Γ ` c ↑ µ1 ⇒ e∗ φ |= µ1 ≡ µ2

φ; Γ ` c ↓ µ2 ⇒ e∗
(elab-cons-wo-down)

S(c) = Πa1 : γ1 . . .Πan : γn.τ → δ(i)
φ; Γ ` e ↓ τ [a1, . . . , an 7→ i1, . . . in]⇒ e∗

φ ` i1 : γ1 · · · φ ` in : γn
φ; Γ ` c(e) ↑ δ(i[a1, . . . , an 7→ i1, . . . in])⇒ c[i1] . . . [in](e∗)

(elab-cons-w-up)

φ; Γ ` c(e) ↑ µ1 ⇒ e∗ φ |= µ1 ≡ µ2

φ; Γ ` c(e) ↓ µ2 ⇒ e∗
(elab-cons-w-down)

φ; Γ ` 〈〉 ↑ 1⇒ 〈〉 (elab-unit-up)

φ; Γ ` 〈〉 ↓ 1⇒ 〈〉 (elab-unit-down)

φ; Γ ` e1 ↑ µ1 ⇒ e∗1 φ; Γ ` e2 ↑ µ2 ⇒ e∗2
φ; Γ ` 〈e1, e2〉 ↑ µ1 ∗ µ2 ⇒ 〈e∗1, e∗2〉

(elab-prod-up)

φ; Γ ` e1 ↓ τ1 ⇒ e∗1 φ; Γ ` e2 ↓ τ2 ⇒ e∗2
φ; Γ ` 〈e1, e2〉 ↓ τ1 ∗ τ2 ⇒ 〈e∗1, e∗2〉

(elab-prod-down)

Figure 4.9: The elaboration rules for MLΠ
0 (C) (I)

64 CHAPTER 4. UNIVERSAL DEPENDENT TYPES

p ↓ τ1 ⇒ (p∗;φ′; Γ′) φ, φ′; Γ,Γ′ ` e ↓ τ2 ⇒ e∗ φ ` τ2 : ∗
φ; Γ ` (p⇒ e) ↓ (τ1 ⇒ τ2)⇒ (p∗ ⇒ e∗)

(elab-match)

φ; Γ ` (p⇒ e) ↓ (τ1 ⇒ τ2)⇒ (p∗ ⇒ e∗) φ; Γ ` ms ↓ (τ1 ⇒ τ2)⇒ ms∗

φ; Γ ` (p⇒ e | ms) ↓ (τ1 ⇒ τ2)⇒ (p∗ ⇒ e∗ | ms∗) (elab-matches)

φ; Γ ` e ↑ τ1 ⇒ e∗ φ; Γ ` ms ↓ (τ1 ⇒ τ2)⇒ ms∗

φ; Γ ` (case e of ms) ↓ τ2 ⇒ (case e∗ of ms∗)
(elab-case)

φ; Γ, x : τ1 ` e ↓ τ2 ⇒ e∗

φ; Γ ` (lam x.e) ↓ τ1 → τ2 ⇒ (lam x : τ1.e
∗)

(elab-lam)

φ; Γ, x1 : τ1, x : τ ` e ↓ τ2 ⇒ e∗ φ; Γ, x1 : τ1 ` x1 ↓ τ ⇒ e∗1
φ; Γ ` (lam x : τ.e) ↓ τ1 → τ2 ⇒ (lam x1 : τ1.let x = e∗1 in e∗ end)

(elab-lam-anno)

φ; Γ ` e1 ↑ τ1 → τ2 ⇒ e∗1 φ; Γ ` e2 ↓ τ1 ⇒ e∗2
φ; Γ ` e1(e2) ↑ τ2 ⇒ e∗1(e∗2)

(elab-app-up)

φ; Γ ` e1(e2) ↑ µ1 ⇒ e∗ φ |= µ1 ≡ µ2

φ; Γ ` e1(e2) ↓ µ2 ⇒ e∗
(elab-app-down)

φ; Γ ` e1 ↑ τ1 ⇒ e∗1 φ; Γ, x : τ1 ` e2 ↑ τ2 ⇒ e∗2
φ; Γ ` let x = e1 in e2 end ↑ τ2 ⇒ let x = e∗1 in e∗2 end

(elab-let-up)

φ; Γ ` e1 ↑ τ1 ⇒ e∗1 φ; Γ, x : τ1 ` e2 ↓ τ2 ⇒ e∗2
φ; Γ ` let x = e1 in e2 end ↓ τ2 ⇒ let x = e∗1 in e∗2 end

(elab-let-down)

φ; Γ, f : τ ` u ↓ τ ⇒ u∗

φ; Γ ` (fix f : τ.u) ↑ τ ⇒ (fix f : τ.u∗)
(elab-fix-up)

φ; Γ, f : τ ` u ↓ τ ⇒ u∗ φ; Γ, x : τ ` x ↓ τ ′ ⇒ e∗

φ; Γ ` (fix f : τ.u) ↓ τ ′ ⇒ let x = (fix f : τ.u∗) in e∗ end
(elab-fix-down)

φ; Γ ` e ↓ τ ⇒ e∗

φ; Γ ` (e : τ) ↑ τ ⇒ e∗
(elab-anno-up)

φ; Γ ` (e : τ) ↑ µ1 ⇒ e∗ φ |= µ1 ≡ µ2

φ; Γ ` (e : τ) ↓ µ2 ⇒ e∗
(elab-anno-down)

Figure 4.10: The elaboration rules for MLΠ
0 (C) (II)

4.2. ELABORATION 65

notice the occurrences of major types, that is types which do not begin with a Π quantifier, in the
elaboration rules. The use of major types is mostly a pragmatic strategy which aims for making the
elaboration more flexible. After introducing the existential dependent types in the next chapter,
we will introduce a coercion function in Subsection 5.2.1 to replace this strategy.

Theorem 4.2.2 We have the following.

1. If φ; Γ ` e ↑ τ ⇒ e∗ is derivable, then φ; Γ ` e∗ : τ is derivable and |e| ∼= |e∗|.

2. If φ; Γ ` e ↓ τ ⇒ e∗ is derivable, then φ; Γ ` e∗ : τ is derivable and |e∗| ∼= |e|.

Proof (1) and (2) follow straightforwardly from a simultaneous structural induction on the
derivations D of φ; Γ ` e ↑ τ ⇒ e∗ and φ; Γ ` e ↓ τ ⇒ e∗. We present a few cases.

φ; Γ ` e ↑ Πa : γ.τ ⇒ e∗ φ ` i : γ
D =

φ; Γ ` e ↑ τ [a 7→ i]⇒ e∗[i] By induction hypothesis, φ; Γ ` e∗ : (Πa : γ.τ) is
derivable and |e∗| ∼= |e|. This leads to the following.

φ; Γ ` e∗ : (Πa : γ.τ) φ ` i : γ
φ; Γ ` e∗[i] : τ [a 7→ i]

(ty-iapp)

Clearly, |e∗[i]| = |e∗| ∼= |e|.

φ; Γ ` x ↑ µ1 ⇒ e∗ φ |= µ1 ≡ µ2
D =

φ; Γ ` x ↓ µ2 ⇒ e∗ By induction hypothesis, φ; Γ ` e∗ : µ1 is derivable and
|e∗| ∼= x. Hence we have the following.

φ; Γ ` e∗ : µ1 φ |= µ1 ≡ µ2

φ; Γ ` e∗ : µ2
(ty-eq)

φ; Γ, x : τ1 ` e ↓ τ2 ⇒ e∗
D =

φ; Γ ` (lam x.e) ↓ τ1 → τ2 ⇒ (lam x : τ1.e
∗
1) By induction hypothesis, φ; Γ, x : τ1 ` e∗ :

τ2 is derivable and |e∗| ∼= |e|. This yields the following.

φ; Γ, x : τ1 ` e∗ : τ2

φ; Γ ` (lam x : τ1.e
∗) : τ1 → τ2

(ty-lam)

Note |lam x : τ1.e
∗| = lam x.|e∗| ∼= lam x.|e| = |lam x.e|. Hence, we are done.

φ; Γ, x1 : τ1, x : τ ` e ↓ τ2 ⇒ e∗ φ; Γ, x1 : τ1 ` x1 ↓ τ ⇒ e∗1D =
φ; Γ ` (lam x : τ.e) ↓ τ1 → τ2 ⇒ (lam x1 : τ1.let x = e∗1 in e∗ end) By induction hypoth-

esis, both φ; Γ, x1 : τ1, x : τ ` e∗ : τ and φ; Γ, x1 : τ1 ` e∗1 : τ are derivable, and |e∗| ∼= |e| and
|e∗1| ∼= x1. This leads to the following.

φ; Γ, x1 : τ1 ` e∗1 : τ φ; Γ, x1 : τ1, x : τ ` e∗ : τ2

φ; Γ, x1 : τ1 ` let x = e∗1 in e∗ end : τ2
(ty-let)

φ; Γ ` (lam x1 : τ1.let x = e∗1 in e∗ end) : τ1 → τ2
(ty-lam)

66 CHAPTER 4. UNIVERSAL DEPENDENT TYPES

Notice that we have the following.

|lam x1 : τ1.let x = e∗1 in e∗ end| = lam x1.let x = |e∗1| in |e∗| end
∼= lam x1.let x = x1 in |e∗| end
∼= lam x.|e∗| ∼= lam x.|e| = |lam x.e|.

This concludes the case.

φ; Γ, f : τ ` u ↓ τ ⇒ u∗ φ; Γ, x : τ ` x ↓ τ ′ ⇒ e∗
D =

φ; Γ ` (fix f : τ.u) ↓ τ ′ ⇒ let x = (fix f : τ.u∗) in e∗ end By induction hypothesis, φ; Γ, f :
τ ` u∗ : τ and φ; Γ, x : τ ` e∗ : τ ′ are derivable. This leads to the following.

φ; Γ, f : τ ` u∗ : τ
φ; Γ ` (fix f : τ.u∗) : τ

(ty-fix)
φ; Γ, x : τ ` e∗ : τ ′

φ; Γ ` let x = (fix f : τ.u∗) in e∗ end : τ ′
(ty-let)

Also by induction hypothesis, |u∗| ∼= |u| and x ∼= |e∗|. This yields the following.

|let x = (fix f : τ.u∗) in e∗ end| = let x = (fix f.|u∗|) in |e∗| end
∼= let x = (fix f.|u|) in x end
∼= (fix f.|u|) = |(fix f.u)|

Note let x = (fix f.|u|) in x end ∼= (fix f.|u|) follows from Corollary 2.3.13.

All other cases can be treated similarly.

The description of type reconstruction as static semantics is intuitively appealing, but there
is still a gap between the description and its implementation. There, elaboration rules explicitly
generate constraints, and thus reduce dependent type-checking to constraint satisfaction. This is
the subject of the next subsection.

4.2.3 Elaboration as Constraint Generation

Our objective is to turn the elaboration rules in Figure 4.9 and Figure 4.10 into rules which generate
constraints immediately when applied. For this purpose, we extend the language for type index
objects as follows.

existential variables A
index objects i, j ::= · · · | A
existential contexts ψ ::= · | ψ,A : γ
existential substitutions θ ::= [] | θ[A 7→ i]

Intuitively speaking, the existential variables are used to represent unknown type indices during
elaboration so that we can postpone the solutions to these indices until we have enough information
on them.

We now list all the constraint generation rules in Figure 4.11 and Figure 4.12. Note that we
assume A is not declared in ψ when when we expand ψ to ψ,A : γ. Also we always assume that
ψ1 and ψ2 share no common existential variables when we form the context ψ1, ψ2. Also notice the
occurrence of aψ in the rules (constr-pi-intro-1) and (constr-pi-intro-2). We decorate a with

4.2. ELABORATION 67

ψ to prevent any existential variable declared in ψ from unifying with an index i in which there are
free occurrences of aψ. Note ~aψ and φψ stand for aψ1 , . . . , a

ψ
n and aψ1 : γ1, . . . , a

ψ
n : γn, respectively,

where ~a = a1, . . . , an and φ = a1 : γ1, . . . , an : γn. If a proposition P is also declared in φ, then
label all the free index variables in P with ψ. We define label(φ) as follows.

label(·) = ∅ label(φ, aψ) = label(φ) ∪ dom(ψ)

A judgement of form φ � θ : ψ can be derived through the following rules.

` φ[ictx]
φ ` [] : ·

φ1 ` i : γ A 6∈ label(φ1) φ1, φ2[A 7→ i] ` θ : ψ
φ1, φ2 ` θ[A 7→ i] : A : γ, ψ

Also we use ∃(ψ).Φ for ∃A1 : γ1 . . . ∃An : γn.Φ, where ψ = A1 : γ1, . . . , An : γn.
Given an index context φ and an existential context ψ, we can form a mixed context (φ | ψ) as

follows.
(· | ψ) = ψ
(φ | ·) = φ

(aψ1 : γ1, φ | A : γ, ψ) =

{
A : γ, (aψ1 : γ1 | φ, ψ) if A ∈ dom(ψ1).
aψ1 : γ1, (φ | A : γ, ψ) if A 6∈ dom(ψ1);

Judgements of forms (φ | ψ) ` i : γ and (φ | ψ) ` τ : ∗ are derived as usual, that is, similar to
judgements of forms φ ` i : γ.

Proposition 4.2.3 Assume that φ � θ : ψ is derivable.

1. If (φ | ψ) ` i : γ is derivable then so is φ[θ] ` i[θ] : γ[θ].

2. If (φ | ψ) ` τ : ∗ is derivable then so is φ[θ] ` τ [θ] : ∗.

3. If (φ | ψ) ` Γ[ctx] is derivable then so is φ[θ] ` Γ[θ][ctx].

Proof These immediately follows from structural induction on the derivations of (φ | ψ) ` i : γ,
(φ | ψ) ` τ : ∗, and (φ | ψ) ` Γ[ctx], respectively.

A judgement of form φ; Γ ` e ↑ τ ⇒[ψ] Φ basically means that e elaborates into some expression
with a synthesized type τ while generating the constraint Φ in which all existential variables are
declared in ψ. Similarly, a judgement of form φ; Γ ` e ↓ τ ⇒[ψ] Φ means that e elaborates into some
expression against a given type τ while generating the constraint Φ in which all existential variables
are declared in ψ. Therefore, we have finally turned type-checking into constraint satisfaction.

Given an index context φ and a constraint formula Φ, we define ∀(φ).Φ as follows.

∀(·).Φ = Φ ∀(φ, a : γ).Φ = ∀(φ).∀a : γ.Φ ∀(φ, P).Φ = ∀(φ).P ⊃ Φ

Proposition 4.2.4 Suppose that either φ; Γ ` e ↑ τ ⇒[ψ] Φ or φ; Γ ` e ↓ τ ⇒[ψ] Φ is derivable.
Then (φ | ψ) ` Γ[ctx], (φ | ψ) ` τ : ∗ and (φ | ψ) ` Φ : o are derivable.

68 CHAPTER 4. UNIVERSAL DEPENDENT TYPES

φ; Γ ` e ↑ τ ⇒[ψ] Φ (φ | ψ) ` γ : ∗s
φ; Γ ` e ↑ τ ⇒[ψ,A : γ] Φ

(constr-weak)

φ; Γ ` e ↑ Πa : γ.τ ⇒[ψ] Φ
φ; Γ ` e ↑ τ [a 7→ A]⇒[ψ,A : γ] Φ

(constr-pi-elim)

φ, aψ : γ; Γ ` e[a 7→ aψ] ↓ τ ⇒[ψ] Φ (φ | ψ) ` Γ[ctx]
φ; Γ ` λa : γ.e ↓ Πa : γ.τ ⇒[ψ] ∀(aψ : γ).Φ

(constr-pi-intro-1)

φ, aψ : γ; Γ ` e ↓ τ ⇒[ψ] Φ (φ | ψ) ` Γ[ctx]
φ; Γ ` e ↓ Πa : γ.τ ⇒[ψ] ∀(aψ : γ).Φ

(constr-pi-intro-2)

Γ(x) = τ (φ | ψ) ` Γ[ctx]
φ; Γ ` x ↑ τ ⇒[ψ] > (constr-var-up)

φ; Γ ` x ↑ µ1 ⇒[ψ2, ψ1] > (φ | ψ2) ` µ2 : ∗ (φ | ψ2) ` Γ[ctx]
φ; Γ ` x ↓ µ2 ⇒[ψ2] ∃(ψ1).µ1 ≡ µ2

(constr-var-down)

S(c) = Πa1 : γ1 . . .Πan : γn.δ(i) (φ;ψ) ` Γ[ictx]
φ; Γ ` c ↑ δ(i[a1, . . . , an 7→ A1, . . . , An])⇒[ψ,A1 : γ1, . . . , An : γn] > (constr-cons-wo-up)

φ; Γ ` c ↑ δ(i1)⇒[ψ2, ψ1] >
(φ | ψ2) ` δ(i2) : ∗ (φ | ψ2) ` Γ[ctx]

φ; Γ ` c ↓ δ(i2)⇒[ψ2] ∃(ψ1).δ(i1) ≡ δ(i2)
(constr-cons-wo-down)

S(c) = Πa1 : γ1 . . .Πan : γn.τ → δ(i)
φ; Γ ` e ↓ τ [a1, . . . , an 7→ A1, . . . , An]⇒[ψ,A1 : γ1, . . . , An : γn] Φ

φ; Γ ` c(e) ↑ δ(i[a1, . . . , an 7→ A1, . . . , An])⇒[ψ,A1 : γ1, . . . , An : γn] Φ
(constr-cons-w-up)

φ; Γ ` c(e) ↑ δ(i1)⇒[ψ2, ψ1] Φ
(φ | ψ2) ` δ(i2) : ∗ (φ | ψ2) ` Γ[ctx]

φ; Γ ` c(e) ↓ δ(i2)⇒[ψ2] ∃(ψ1).Φ ∧ δ(i1) ≡ δ(i2)
(constr-cons-w-down)

(φ | ψ) ` Γ[ctx]
φ; Γ ` 〈〉 ↑ 1⇒[ψ] > (constr-unit-up)

(φ | ψ) ` Γ[ctx]
φ; Γ ` 〈〉 ↓ 1⇒[ψ] > (constr-unit-down)

φ; Γ ` e1 ↑ τ1 ⇒[ψ] Φ1 φ; Γ ` e2 ↑ τ2 ⇒[ψ] Φ2

φ; Γ ` 〈e1, e2〉 ↑ τ1 ∗ τ2 ⇒[ψ] Φ1 ∧ Φ2
(constr-prod-up)

φ; Γ ` e1 ↓ τ1 ⇒[ψ] Φ1 φ; Γ ` e2 ↓ τ2 ⇒[ψ] Φ2

φ; Γ ` 〈e1, e2〉 ↓ τ1 ∗ τ2 ⇒[ψ] Φ1 ∧ Φ2
(constr-prod-down)

Figure 4.11: The constraint generation rules for MLΠ
0 (C) (I)

4.2. ELABORATION 69

p ↓ τ1 ⇒ (p∗;φ1; Γ1) φ, φψ1 ; Γ,Γ1 ` e ↓ τ2 ⇒[ψ] Φ
(φ | ψ) ` τ1 ⇒ τ2 : ∗ (φ | ψ) ` Γ[ctx]

φ; Γ ` (p⇒ e) ↓ (τ1 ⇒ τ2)⇒[ψ] ∀(φψ1).Φ
(constr-match)

φ; Γ ` (p⇒ e) ↓ (τ1 ⇒ τ2)⇒[ψ] Φ1 φ; Γ ` ms ↓ (τ1 ⇒ τ2)⇒[ψ] Φ2

φ; Γ ` (p⇒ e | ms) ↓ (τ1 ⇒ τ2)⇒[ψ] Φ1 ∧ Φ2
(constr-matches)

φ; Γ ` e ↑ τ1 ⇒[ψ] Φ1 φ; Γ ` ms ↓ (τ1 ⇒ τ2)⇒[ψ] Φ2

φ; Γ ` (case e of ms) ↓ τ2 ⇒[ψ] Φ1 ∧ Φ2
(constr-case)

φ; Γ, x : τ1 ` e ↓ τ2 ⇒[ψ] Φ
φ; Γ ` (lam x.e) ↓ τ1 → τ2 ⇒[ψ] Φ

(constr-lam)

φ; Γ, x : τ ` e ↓ τ2 ⇒[ψ] Φ φ; Γ, x : τ1 ` x ↓ τ ⇒[ψ] Φ1

φ; Γ ` (lam x : τ.e) ↓ τ1 → τ2 ⇒[ψ] Φ ∧ Φ1
(constr-lam-anno)

φ; Γ ` e1 ↑ τ1 → τ2 ⇒[ψ] Φ1 φ; Γ ` e2 ↓ τ1 ⇒[ψ] Φ2

φ; Γ ` e1(e2) ↑ τ2 ⇒[ψ] Φ1 ∧ Φ2
(constr-app-up)

φ; Γ ` e1(e2) ↑ µ1 ⇒[ψ2, ψ1] Φ (φ | ψ2) ` µ2 : ∗ (φ | ψ2) ` Γ[ctx]
φ; Γ ` e1(e2) ↓ µ2 ⇒[ψ2] ∃(ψ1).Φ ∧ µ1 ≡ µ2

(constr-app-down)

φ; Γ ` e1 ↑ τ1 ⇒[ψ] Φ1 φ; Γ, x : τ1 ` e2 ↑ τ2 ⇒[ψ] Φ2

φ; Γ ` (let x = e1 in e2 end) ↑ τ2 ⇒[ψ] Φ1 ∧ Φ2
(constr-let-up)

φ; Γ ` e1 ↑ τ1 ⇒[ψ] Φ1 φ; Γ, x : τ1 ` e2 ↓ τ2 ⇒[ψ] Φ2

φ; Γ ` (let x = e1 in e2 end) ↓ τ2 ⇒[ψ] Φ1 ∧ Φ2
(constr-let-down)

φ; Γ, f : τ ` u ↓ τ ⇒[ψ] Φ
φ; Γ ` (fix f : τ.u) ↑ τ ⇒[ψ] Φ

(constr-fix-up)

φ; Γ, f : τ ` u ↓ τ ⇒[ψ] Φ φ; Γ, x : τ ` x ↓ τ1 ⇒[ψ] Φ1

φ; Γ ` (fix f : τ.u) ↓ τ1 ⇒[ψ] Φ ∧ Φ1
(constr-fix-down)

φ1, φ2; Γ ` e ↓ τ ⇒[ψ] Φ φ1 ` τ : ∗
φ1, φ2; Γ ` (e : τ) ↑ τ ⇒[ψ] Φ

(constr-anno-up)

φ; Γ ` (e : τ) ↑ µ1 ⇒[ψ2, ψ1] > (φ | ψ2) ` µ2 : ∗ (φ | ψ2) ` Γ[ctx]
φ; Γ ` (e : τ) ↓ µ2 ⇒[ψ2] ∃(ψ1).µ1 ≡ µ2

(constr-anno-down)

Figure 4.12: The constraint generation rules for MLΠ
0 (C) (II)

70 CHAPTER 4. UNIVERSAL DEPENDENT TYPES

Proof This simply follows from a simultaneous structural induction on the derivations of φ; Γ `
e ↑ τ ⇒[ψ] Φ and φ; Γ ` e ↑ τ ⇒[ψ] Φ.

Theorem 4.2.5 relates the constraint generation rules to the elaboration rules in Figure 4.9 and
Figure 4.10, justifying the correctness of these constraint generation rules.

Theorem 4.2.5 We have the following.

1. Suppose that φ; Γ ` e ↑ τ ⇒[ψ] Φ is derivable. If φ[θ] |= Φ[θ] is provable for some θ such that
φ � θ : ψ is derivable, then there exists e∗ such that φ[θ]; Γ[θ] ` e ↑ τ [θ]⇒ e∗ is derivable.

2. Suppose that φ; Γ ` e ↓ τ ⇒[ψ] Φ is derivable. If φ[θ] |= Φ[θ] is provable for some θ such that
φ � θ : ψ is derivable, then there exists e∗ such that φ[θ]; Γ[θ] ` e ↓ τ [θ]⇒ e∗ is derivable.

Proof (1) and (2) follows from a simultaneous structural induction on the derivations D of
Γ ` e ↑ τ ⇒[ψ] Φ and φ; Γ ` e ↓ τ ⇒[ψ] Φ. We present several cases as follows.

φ, aψ : γ; Γ ` e ↓ τ ⇒[ψ] Φ
D =

φ; Γ ` e ↓ Πa : γ.τ ⇒[ψ] ∀(aψ : γ).Φ Note that (∀(aψ : γ).Φ)[θ] = ∀(aψ : γ[θ]).Φ[θ] since

φ � θ : ψ is derivable. The derivation of φ[θ] |= ∀(aψ : γ[θ]).Φ[θ] must be of the following
form.

φ[θ], aψ : γ[θ] |= Φ[θ]
φ[θ] |= ∀(aψ : γ[θ]).Φ[θ]

By induction hypothesis, φ[θ], aψ : γ[θ]; Γ[θ] ` e ↓ τ [θ] ⇒ e∗ is derivable. This leads to the
following.

φ[θ], aψ : γ[θ]; Γ[θ] ` e ↓ τ [θ]⇒ e∗

φ[θ]; Γ[θ] ` e ↓ Πaψ : γ[θ].τ [θ]⇒ e∗
(elab-pi-intro-1)

Note that Π(aψ : γ[θ]).τ [θ] is (Π(aψ : γ).τ)[θ], and we are done.

φ; Γ ` e1 ↑ τ1 ⇒[ψ] Φ1 φ; Γ ` e2 ↑ τ2 ⇒[ψ] Φ2
D =

φ; Γ ` 〈e1, e2〉 ↑ τ1 ∗ τ2 ⇒[ψ] Φ1 ∧ Φ2 Then there exists θ such that φ |= (Φ1 ∧
Φ2)[θ] is derivable. This implies that both φ |= Φ1[θ] and φ |= Φ2[θ] are derivable. By
induction hypothesis, for i = 1, 2, φ[θ]; Γ[θ] ` ei ↑ τi[θ] ⇒ e∗i are derivable for some e∗i . This
leads to the following.

φ[θ]; Γ[θ] ` e1 ↑ τ1[θ]⇒ e∗1 φ[θ]; Γ[θ] ` e2 ↑ τ2[θ]⇒ e∗2
φ[θ]; Γ[θ] ` e ↑ τ1[θ1] ∗ τ2[θ2]⇒ 〈e∗1, e∗2〉

(elab-prod-up)

Note that (τ1 ∗ τ2)[θ] = τ1[θ] ∗ τ2[θ]. Hence we are done.

φ; Γ ` e0 ↑ τ0 ⇒[ψ] Φ1 φ; Γ ` ms ↓ (τ0 ⇒ τ)⇒[ψ] Φ2
D =

φ; Γ ` (case e0 of ms) ↓ τ ⇒[ψ] Φ1 ∧ Φ2 Then φ[θ] |= (Φ1∧Φ2)[θ2] is deriv-
able for some θ such that φ� θ : ψ holds. This implies φ |= Φ1[θ] and φ |= Φ2[θ] are derivable.

4.2. ELABORATION 71

By induction hypothesis, φ[θ]; Γ[θ] ` e0 ↑ τ0[θ]⇒ e∗0 and φ[θ]; Γ[θ] ` ms ↓ τ0[θ]⇒ τ [θ]⇒ ms∗

are derivable for some e∗0 and ms∗. This leads to the following.

φ[θ]; Γ[θ] ` e0 ↑ τ0[θ]⇒ e∗ φ; Γ ` ms ↓ (τ0[θ]⇒ τ [θ])⇒ ms∗

φ[θ]; Γ[θ] ` (case e0 of ms) ↓ τ [θ]⇒ (case e∗ of ms∗)
(elab-case)

Hence we are done.

φ; Γ ` e1 ↑ τ1 → τ2 ⇒[ψ] Φ1 φ; Γ ` e2 ↓ τ1 ⇒[ψ] Φ2
D =

φ; Γ ` e1(e2) ↑ τ2 ⇒[ψ] Φ1 ∧ Φ2 Then φ[θ] |= (Φ1 ∧Φ2)[θ] is deriv-
able for some θ such that φ � θ : ψ is derivable. Hence, φ[θ] |= Φ1[θ] is derivable, and this
yields that φ[θ]; Γ[θ] ` e1 ↑ τ1[θ] → τ2[θ] ⇒ e∗1 is derivable for some e∗1. Also by induction
hypothesis, φ[θ]; Γ[θ] ` e2 ↓ τ1[θ]⇒ e∗2 is derivable for some e∗2 since φ[θ] |= Φ2[θ] is derivable.
This yields the following.

φ[θ]; Γ[θ] ` e1 ↑ τ1[θ]→ τ2[θ]⇒ e∗1 φ[θ]; Γ[θ] ` e2 ↓ τ1[θ]⇒ e∗2
φ[θ]; Γ[θ] ` e1(e2) ↑ τ2[θ]⇒ e∗1(e∗2)

(elab-app-up)

Hence we are done.

φ; Γ ` e1(e2) ↑ µ1 ⇒[ψ2, ψ1] Φ (φ | ψ2) ` µ2 : ∗ (φ | ψ2) ` Γ[ctx]
D =

φ; Γ ` e1(e2) ↓ µ2 ⇒[ψ2] ∃(ψ1).Φ ∧ µ1 ≡ µ2 Then the following

φ[θ2] |= (∃(ψ1).Φ ∧ µ1 ≡ µ2)[θ2]

is derivable for some θ2 such that φ � θ : ψ2 holds. Note that

(∃(ψ1).Φ ∧ µ1 ≡ µ2)[θ2] = ∃(ψ1).Φ[θ2] ∧ µ1[θ2] ≡ µ2[θ2],

and therefore φ[θ2] |= ∃(ψ1).Φ[θ2] ∧ µ1[θ2] ≡ µ2[θ2] is derivable. This means that (φ[θ2] |=
Φ[θ2]∧µ1[θ2] ≡ µ2[θ2])[θ1] is derivable for some θ1 such that φ[θ2] ` θ1 : ψ1 holds. This implies
that φ� θ2∪θ1 : ψ2, ψ1 is also derivable. By induction hypothesis, φ[θ]; Γ[θ] ` e1(e2) ↑ τ2[θ]⇒
e∗ is derivable for θ = θ2∪ θ1. Since both (φ | ψ2) ` Γ[ctx] and (φ | ψ2) ` τ2 : ∗ are derivable,
we have φ[θ] = φ[θ2][θ1] = φ[θ2], Γ[θ] = Γ[θ2][θ1] = Γ[θ2], and τ2[θ] = τ2[θ2][θ1] = τ2[θ2].
Therefore, φ[θ2]; Γ[θ2] ` e1(e2) ↑ τ2[θ2]⇒ e∗ is derivable.

φ; Γ ` e1 ↑ τ1 ⇒[ψ] Φ1 φ; Γ, x : τ1 ` e2 ↓ τ2 ⇒[ψ] Φ2
D =

φ; Γ ` (let x = e1 in e2 end) ↓ τ2 ⇒[ψ] Φ1 ∧ Φ2 Then φ[θ] |= (Φ1∧Φ2)[θ] is derivable
for some θ such that φ � θ : ψ2 holds. Clearly, (Φ1 ∧ Φ2)[θ] = Φ1[θ] ∧ Φ2[θ], and therefore,
both φ[θ] |= Φ1[θ] and φ[θ] ` Φ2[θ] are derivable. By induction hypothesis, both φ[θ]; Γ[θ] `
e1 ↑ τ1[θ] ⇒ e∗1 and φ[θ]; Γ[θ], x : τ1[θ] ` e2 ↓ τ2[θ] ⇒ e∗2 are derivable. This leads to the
following.

φ[θ]; Γ[θ] ` e1 ↑ τ1[θ]⇒ e∗1 φ[θ]; Γ[θ], x : τ1[θ] ` e2 ↓ τ2[θ]⇒ e∗2
φ[θ]; Γ[θ] ` let x = e1 in e2 end ↓ τ2[θ]⇒ let x = e∗1 in e∗2 end

(elab-let-down)

Hence we are done.

72 CHAPTER 4. UNIVERSAL DEPENDENT TYPES

φ; Γ ` e ↓ τ ⇒[ψ] Φ φ ` τ : ∗
D =

φ; Γ ` (e : τ) ↑ τ ⇒[ψ] Φ Then φ[θ] |= Φ[θ] is derivable for some θ such that φ�θ :
ψ holds. By induction hypothesis, φ[θ]; Γ[θ] ` e ↓ τ [θ]⇒ e∗ is derivable for some e∗. Since τ
cannot contain any existential variables, τ [θ] = τ . This leads to the following.

φ[θ]; Γ[θ] ` e ↓ τ ⇒ e∗

φ[θ]; Γ[θ] ` (e : τ) ↑ τ ⇒ e∗
(elab-anno-up)

All other cases can be handled similarly.

Given a closed expression e in the external language DML0(C), we try to derive a judgement
of form ·; · ` e ↑ τ ⇒ [ψ] Φ. This can succeed if there are enough type annotations in e. By
Theorem 4.2.5, e is typable if and only if · |= ∃(ψ).Φ is provable. In this way, type-checking in
MLΠ

0 (C) is reduced to constraint satisfaction.
There is still some indeterminacy in the constraint generation rules, which has to be handled in

an implementation. For instance, if both of the rules (constr-pi-intro-1) and (constr-pi-intro-2)
are applicable, it must be decided which one is to be applied. We will explain some of these issues
in Chapter 8.

4.2.4 Some Informal Explanation on Constraint Generation Rules

We first explain why the rule (constr-weak) is needed. Note that in the following rule

φ; Γ ` e1 ↑ τ1 ⇒[ψ] Φ1 φ; Γ ` e2 ↑ τ2 ⇒[ψ] Φ2

φ; Γ ` 〈e1, e2〉 ↑ τ1 ∗ τ2 ⇒[ψ] Φ1 ∧ Φ2
(constr-prod-up)

the two premises must have the same existential variable declaration ψ. However, it is most likely
that φ; Γ ` e1 ↑ τ1 ⇒[ψ1] Φ1 and φ; Γ ` e1 ↑ τ1 ⇒[ψ2] Φ1 are derived for different φ1 and φ2. In
order to obtain the same φ, the rule (constr-weak) needs to be applied. Now the question is why
we do not replace the rule (constr-prod-up) with the following.

φ; Γ ` e1 ↑ τ1 ⇒[ψ1] Φ1 φ; Γ ` e2 ↑ τ2 ⇒[ψ2] Φ2

φ; Γ ` 〈e1, e2〉 ↑ τ1 ∗ τ2 ⇒[ψ1, ψ2] Φ1 ∧ Φ2

Unfortunately, this replacement can readily invalidate Proposition 4.2.4, and thus breaks down the
proof of Theorem 4.2.5. We present such an example. Suppose we try to derive the following for
some Φ.

a : γ;x : δ(A1), y : δ(A2) ` let z = 〈x, y〉 in z end ↓ δ(a) ∗ δ(a)⇒[A1 : γ,A2 : γ] Φ

Hence, we need to derive the following for some τ and Φ0.

a : γ;x : δ(A1), y : δ(A2) ` 〈x, y〉 ↑ τ ⇒[A1 : γ,A2 : γ] Φ0

However, it is impossible to find ψ1 and ψ2 such that ψ1, ψ2 = A1 : γ,A2 : γ and both

a : γ;x : δ(A1), y : δ(A2) ` x ↑ τ1 ⇒[ψ1] Φ1 and a : γ;x : δ(A1), y : δ(A2) ` y ↑ τ2 ⇒[ψ2] Φ2

4.2. ELABORATION 73

are derivable for some τ1,Φ1 and τ2,Φ2, respectively. For instance, if ψ1 = A1 : γ, then the
judgement a : γ;x : δ(A1), y : δ(A2) ` x ↑ τ1 ⇒ [ψ1] Φ1 is ill-formed since A2 is not declared
anywhere.

We now briefly mention how these constraint generation rules are implemented. We associate a
function up with the judgements of form φ; Γ ` e ↑ τ ⇒[ψ] Φ, which, when given a triple (φ,Γ, e),
returns a triple (τ, ψ,Φ). Similarly, we associate a function down with the judgements of form φ; Γ `
e ↓ τ ⇒[ψ] Φ, which returns Φ when given (φ,Γ, e, ψ, τ). There are also occasions where we need a
variant up′ of up which returns a pair (τ,Φ) when given a quadruple (φ,Γ, e, ψ). For instance, when
computing down(φ,Γ, let x = e1 in e2 end, ψ, τ2), we need to compute up′(φ,Γ, e1, ψ) to get a pair
(τ1,Φ1) and then compute down(φ, (Γ, x : τ1), e2, ψ, τ2) to get Φ2. The result of down(φ,Γ, let x =
e1 in e2 end, ψ, τ2) is then Φ1 ∧ Φ2. The actual implementation simply follows the constraint
generation rules, and therefore we omit the further details.

4.2.5 An Example on Elaboration

We now present a simple example in full details to illustrate how the constraint generation rules
in Figure 4.11 and Figure 4.12 are applied. Unlike in ML0, the type-checking is rather involved
in MLΠ

0 (C), and therefore we strongly recommend that the reader follow through these details
carefully. This will be especially helpful if the reader intends to understand how type-checking
is performed for existential dependent types, which is a highly complicated subject in the next
chapter.

The following is basically the auxiliary tail-recursive function in the body of the reverse function
in Figure 1.1, but we have replaced the polymorphic type ’a list with the monomorphic type
intlist. We will not introduce polymorphic types until Chapter 6.

fun rev(nil, ys) = ys
| rev(x::xs, ys) = rev(xs, x::ys)

where rev <| {m:nat} {n:nat} intlist(m) * intlist(n) -> intlist(m+n)

This code corresponds to the following expression in the formal external language DML0(C),

fix rev : (Πm : nat.Πn : nat.intlist(m) ∗ intlist(n)→ intlist(m+ n)).body

where

body = lam pair.case pair of 〈nil, ys〉 =⇒ ys | 〈cons(〈x, xs〉), ys〉 =⇒ rev(〈xs, cons(〈x, ys〉)〉)

For the sake of simplicity, we will omit the parts of a constraint generation rule that do not generate
constraints when we write out constraint generation rules in the following presentation.

Let revCode be the above DML0(C) expression. We aim for constructing a derivation of the
following judgement

·; · ` revCode ↑ τ ⇒[·] Φ0

for some τ and Φ0. Hence, the derivation must be of the following form

·; rev : τ ` body ↓ τ ⇒[·] Φ0

·; · ` revCode ↑ τ ⇒[·] Φ0
(constr-fix-up)

74 CHAPTER 4. UNIVERSAL DEPENDENT TYPES

and
τ = Πm : nat.Πn : nat.intlist(m) ∗ intlist(n)→ intlist(m+ n).

Then we should have a derivation of the following form for some Φ1,

m : nat, n : nat; rev : τ ` body ↓ µ⇒[·] Φ1

m : nat; rev : τ ` body ↓ Πn : nat.µ⇒[·] ∀n : nat.Φ1
(constr-pi-intro-2)

·; rev : τ ` body ↓ τ ⇒[·] ∀m : nat.∀n : nat.Φ1
(constr-pi-intro-2)

where Φ0 = ∀m : nat.∀n : nat.Φ1 and µ = intlist(m) ∗ intlist(n)→ intlist(m+n). Then we
should reach a derivation of the following form,

φ; Γ ` case pair of ms ↓ intlist(m+ n)⇒[·] Φ1

m : nat, n : nat; rev : τ ` body ↑ µ⇒[·] Φ1
(constr-lam)

where φ = m : nat, n : nat, Γ = rev : τ, pair : intlist(m) ∗ intlist(n), and ms is

〈nil, ys〉 =⇒ ys | 〈cons(〈x, xs〉), ys〉 =⇒ rev(〈xs, cons(〈x, ys〉)〉)

Then we should reach a derivation of the following form for some τ3,Φ2 and Φ3 such that Φ1 =
Φ2 ∧ Φ3.

φ; Γ ` pair ↑ τ3 ⇒[·] Φ2 φ; Γ ` ms ↓ (τ3 ⇒ intlist(m+ n))⇒[·] Φ3

φ; Γ ` case pair of ms ↓ intlist(m+ n)⇒[·] Φ2 ∧ Φ3
(constr-case)

Clearly, we have the following derivation for τ3 = intlist(m) ∗ intlist(n) and Φ2 = >.

Γ(pair) = τ3

φ; Γ ` pair ↑ τ3 ⇒[·] Φ2
(constr-var-up)

Then we should reach a derivation of the following form for Φ3 = Φ4 ∧ Φ5,

D1 D2

φ; Γ ` ms ↓ (intlist(m) ∗ intlist(n)⇒ intlist(m+ n))⇒[·] Φ4 ∧ Φ5
(constr-matches)

where D1 is a derivation of

φ; Γ ` 〈nil, ys〉 =⇒ ys ↓ (intlist(m) ∗ intlist(n)⇒ intlist(m+ n))⇒[·] Φ4

and D2 is a derivation of

φ; Γ ` 〈cons(〈x, xs〉), ys〉 =⇒ ys ↓ (intlist(m) ∗ intlist(n)⇒ intlist(m+ n))⇒[·] Φ5

Clearly, D1 is of the following form for some p1, φ1 and Γ1,

〈nil, ys〉 ↓ τ3 � (p1;φ1; Γ1) φ, φ1; Γ,Γ1 ` ys ↓ τ4 ⇒[·] Φ4

φ; Γ ` 〈nil, ys〉 =⇒ ys ↓ τ3 ⇒ τ4 ⇒[·] Φ4
(constr-match)

4.2. ELABORATION 75

where τ4 = intlist(m+ n). Notice that we have the following derivation for p1 = 〈nil, ys〉, φ1 =
0 .= m and Γ1 = ys : intlist(n).

S(nil) = intlist(0)
nil ↓ intlist(m) � (nil; 0 .= m; ·) ys ↓ intlist(n) � (ys; ·; ys : intlist(n))

〈nil, ys〉 ↓ τ3 � (p1;φ1; Γ1)

Hence we have the following derivation for Φ4 = ∀(φ1).intlist(n) ≡ intlist(m+ n).

Γ1(ys) = intlist(n)
φ, φ1; Γ,Γ1 ` ys ↑ intlist(n)⇒[·] >

φ, φ1; Γ,Γ1 ` ys ↓ τ4 ⇒[·] intlist(n) ≡ intlist(m+ n)
(constr-var-down)

φ; Γ ` 〈nil, ys〉 =⇒ ys ↓ τ3 ⇒ τ4 ⇒[·] Φ4
(constr-match)

Now let us turn our attention to D2. Clearly, D2 is of the following form for some p2, φ2 and Γ2,

〈cons(〈x, xs〉), ys〉 ↓ τ3 � (p2;φ2; Γ2) φ, φ2; Γ,Γ2 ` rev(〈xs, cons(〈x, ys〉)〉) ↓ τ4 ⇒[·] Φ′5
φ; Γ ` 〈cons(〈x, xs〉), ys〉 =⇒ ys ↓ (τ3 ⇒ τ4)⇒[·] Φ5

where Φ5 = ∀(φ2).Φ′5. Notice that we have the following derivation D3

S(cons) = τcons

x ↓ int � (x; ·;x : int) xs ↓ intlist(a) � (xs; ·;xs : intlist(a))
〈x, xs〉� (〈x, xs〉; ·;x : int, xs : intlist(a))

cons(〈x, xs〉) ↓ intlist(m) � (cons[a](〈x, xs〉); a : nat, a+ 1 .= m;x : int, xs : intlist(a))

where τcons = Πa : nat.int ∗ intlist(a) → intlist(a + 1). This leads to the derivation below
for p2 = 〈cons[a](〈x, xs〉), ys〉, φ2 = a : nat, a + 1 .= m and Γ2 = x : int, xs : intlist(a), ys :
intlist(n).

D3 ys ↓ intlist(n) � (ys; ·; ys : intlist(n))
〈cons(〈x, xs〉), ys〉 ↓ τ3 � (p2;φ2; Γ2)

(elab-pat-prod)

We now have the task to construct a derivation of the following form for some τ1, τ2 and ψ,

φ, φ2; Γ,Γ2 ` rev ↑ τ1 → τ2 ⇒[ψ] Φ6 φ, φ2; Γ,Γ2 ` 〈cons(〈x, xs〉), ys〉 ↓ τ2 ⇒[ψ] Φ7

φ, φ2; Γ,Γ2 ` rev(〈xs, cons(〈x, ys〉)〉) ↑ τ1 ⇒[ψ] Φ6 ∧ Φ7

...
φ, φ2; Γ,Γ2 ` rev(〈xs, cons(〈x, ys〉)〉) ↓ τ4 ⇒[·] Φ′5

(constr-app-down)

Obviously, we have the following derivation for

τ1 = intlist(M) ∗ intlist(N) τ2 = intlist(M +N) ψ = M : nat,N : nat Φ6 = >.

φ, φ2; Γ,Γ2 ` rev ↑ Πm : nat.Πn : nat.intlist(m) ∗ intlist(n)→ intlist(m+ n)⇒[·] >
φ, φ2; Γ,Γ2 ` rev ↑ Πn : nat.intlist(M) ∗ intlist(n)→ intlist(M + n)⇒[M : nat] >

φ, φ2; Γ,Γ2 ` rev ↑ τ1 → τ2 ⇒[ψ] Φ6

76 CHAPTER 4. UNIVERSAL DEPENDENT TYPES

Then we need to construct a derivation of the following form,

φ, φ2; Γ,Γ2 `↓ intlist(M)⇒[ψ] Φ8 φ, φ2; Γ,Γ2 ` cons(〈x, ys〉) ↓ intlist(N)⇒[ψ] Φ9

φ, φ2; Γ,Γ2 ` 〈xs, cons(〈x, ys〉)〉 ↓ τ1 ⇒[ψ] Φ8 ∧ Φ9

where Φ7 = Φ8 ∧ Φ9.
Clearly, we have the following derivation for Φ8 = intlist(a) ≡ intlist(M).

Γ2(xs) = intlist(n)
φ, φ2; Γ,Γ2 ` xs ↑ intlist(n)⇒[ψ] > (constr-var-up)

φ, φ2; Γ,Γ2 ` xs ↓ intlist(M)⇒[ψ] Φ8
(constr-var-down)

Let D4 be following derivation,

Γ2(x) = int

φ, φ2; Γ,Γ2 ` x ↑ int⇒[ψ,L : nat] > (constr-var-up)

φ, φ2; Γ,Γ2 ` x ↓ int⇒[ψ,L : nat] > ∧ int ≡ int
(constr-var-down)

and D5 be the following derivation.

Γ2(ys) = intlist(n)
φ, φ2; Γ,Γ2 ` ys ↑ intlist(n)⇒[ψ,L : nat] > (constr-var-up)

φ, φ2; Γ,Γ2 ` ys ↓ intlist(L)⇒[ψ,L : nat] > ∧ intlist(n) ≡ intlist(L)
(constr-var-down)

Therefore, we have the following derivation

S(cons) = τcons

D4 D5

φ, φ2; Γ,Γ2 ` 〈x, ys〉 ↓ int ∗ intlist(L)⇒[ψ,L : nat] Φ10
(constr-prod-down)

φ, φ2; Γ,Γ2 ` cons(〈x, ys〉) ↑ intlist(L+ 1)⇒[ψ,L : nat] > ∧ Φ10
(constr-cons-w-up)

φ, φ2; Γ,Γ2 ` cons(〈x, ys〉) ↓ intlist(N)⇒[ψ] Φ9
(constr-app-down)

for Φ9 = ∃(L : nat).> ∧ Φ10 ∧ intlist(L + 1) ≡ intlist(N), where Φ10 = > ∧ int ≡ int ∧ > ∧
intlist(n) ≡ intlist(L). So far we have constructed a derivation of

φ, φ2; Γ,Γ2 ` rev(〈xs, cons(〈x, ys〉)〉) ↑ τ2 ⇒[ψ] Φ6 ∧ Φ7,

which then leads to the following for Φ′5 = ∃(ψ).Φ6 ∧ Φ7 ∧ intlist(M +N) ≡ intlist(m+ n).

φ, φ2; Γ,Γ2 ` rev(〈xs, cons(〈x, ys〉)〉) ↑ τ2 ⇒[ψ] Φ6 ∧ Φ7

φ, φ2; Γ,Γ2 ` rev(〈xs, cons(〈x, ys〉)〉) ↓ τ4 ⇒[·] Φ′5
(constr-app-down)

We have finally finished the construction of a derivation of ·; · ` revCode ↑ τ ⇒[·] Φ0 for

Φ0 = ∀m : nat.∀n : nat.Φ1 = ∀m : nat.∀n : nat.Φ2 ∧ Φ3 = ∀m : nat.∀n : nat.> ∧ Φ4 ∧ Φ5

= ∀m : nat.∀n : nat.> ∧ (0 .= m ⊃ intlist(n) ≡ intlist(m+ n)) ∧ Φ5

Φ5 = ∀a : nat.a+ 1 .= m ⊃ Φ′5
= ∀a : nat.a+ 1 .= m ⊃ ∃M : nat.∃N : nat.Φ6 ∧ Φ7 ∧ intlist(M +N) ≡ intlist(m+ n)
= ∀a : nat.a+ 1 .= m ⊃ ∃M : nat.∃N : nat.> ∧ Φ7 ∧ intlist(M +N) ≡ intlist(m+ n)

Φ7 = Φ8 ∧ Φ9 =
= ∃(L : nat).intlist(a) ≡ intlist(M) ∧ > ∧ Φ10 ∧ intlist(L+ 1) ≡ intlist(N)

Φ10 = > ∧ int ≡ int ∧ > ∧ intlist(n) ≡ intlist(L)

4.2. ELABORATION 77

If we replace δ(i) ≡ δ(j) with i .= j and remove all >, then Φ0 can be reduced to the following.

∀m : nat.∀n : nat.
(0 .= m ⊃ n .= m+ n)∧
∀a : nat.a+ 1 .= m ⊃ ∧
∃M : nat.∃N : nat.

(∃(L : nat).a .= M ∧ n .= L ∧ L+ 1 .= N) ∧M +N
.= m+ n

If we eliminate all the existential quantifiers in Φ0 by substituting n for L, a for M and n+ 1 for
N , we obtain the following constraint.

∀m : nat.∀n : nat.
(0 .= m ⊃ n .= m+ n)∧
∀a : nat.a+ 1 .= m ⊃ (a .= a ∧ n .= n ∧ n+ 1 .= n+ 1 ∧ a+ (n+ 1) .= m+ n)

The validity of the constraint can be readily verified. Therefore |= Φ is derivable, implying that
revCode is well-typed.

The elimination of existential quantifiers is crucial to simplifying constraints, and therefore
crucial to the practicality of our approach. We address this issue in the next subsection.

4.2.6 Elimination of Existential Variables

It is shown that all existential variables can be eliminated from the constraint generated after the
example in the last subsection is elaborated. Our observation indicates that this is the case for
almost of all the examples in our experiment. This suggests that we eliminate as many existential
quantifiers as possible in a constraint before passing it to a constraint solver.

The rule for eliminating existential quantifiers in constraints are presented in Figure 4.13. A
judgement of form φ ` i : γ ⇒ Φ means that φ ` i : γ is derivable if φ |= Φ is. This is reflected in
the following proposition.

Theorem 4.2.6 If both φ ` i : γ ⇒ Φ and φ |= Φ are derivable, then φ ` i : γ is also derivable.

Proof This simply follows from a structural induction on the derivation D of φ ` i : γ ⇒ Φ. We
present one case.

φ ` i : γ ⇒ Φ1 φ, a : γ ` P : o⇒ Φ2
D =

φ ` i : {a : γ | P} ⇒ P [a 7→ i] ∧ Φ1 ∧ ∀(a : γ).Φ2 Since φ |= P [a 7→ i] ∧ Φ1 ∧ ∀(a : γ).Φ2

is derivable, φ |= P [a 7→ i], φ |= Φ1 and φ, a : γ ` Φ2 are also derivable. By induction
hypothesis, φ ` i : γ and φ, a : γ ` P : o is derivable. This leads to the following.

φ ` i : γ φ, a : γ ` P : o φ |= P [a 7→ i]
φ ` i : {a : γ | P} (index-subset)

All other cases can be handled similarly.

We use solve(A : γ; Φ) ↓ (i; Φ′) to mean that solving Φ for A yields an index i and a constraint
Φ′. Also solves(ψ; Φ) ↓ (θ; Φ′) means that solving Φ for the existential variables declared in ψ
generates a substitution θ with domain ψ and a constraint Φ′. Finally, elimExt(Φ) ↓ Φ′ means
that eliminating all the existential variables in Φ yields a constraint Φ′.

78 CHAPTER 4. UNIVERSAL DEPENDENT TYPES

Proposition 4.2.7 We have the following.

1. Suppose φ;φ1 ` solve(A : γ; Φ) ↓ (i; Φ′) is derivable. If φ, φ1 |= Φ′[A 7→ i] is derivable then
so is φ, φ1 |= Φ[A 7→ i].

2. Suppose φ ` solves(ψ; Φ) ↓ (θ; Φ′). If φ |= Φ′ is derivable then so is φ |= Φ[θ].

3. Suppose φ ` elimExt(Φ) ↓ Φ′ is derivable. If φ |= Φ′ is derivable then so is φ |= Φ.

Proof (1) follows from a structural induction on the derivation of φ;φ1 ` solve(A : γ; Φ) ↓ (i; Φ′),
and (2) follows from a structural induction on the derivation of φ ` solves(ψ; Φ) ↓ (θ; Φ′) with the
help of (1). (3) then follows from (2).

We have thus established the correctness of the rules for eliminating existential variables in con-
straints.

4.3 Summary

The language MLΠ
0 (C), which extends the language ML0 with universal dependent types, is for-

mulated to parameterize over a given constraint domain C.
We call the type system of MLΠ

0 (C) a restricted form of dependent type system for the following
reason. We view both index objects and expressions in MLΠ

0 (C) as terms. In this view, the type
of a term can depend on the value of terms. For instance, the type of reverse[n](l), which is
intlist(n), depends on n. An alternative is to view index objects as types, and therefore to
regard the type system of MLΠ

0 (C) as a polymorphic type system. However, this alternative leads
some serious complications. For instance, it is unclear what expressions are of type i if i is an index
object. Also this view complicates the interpretation of subset sorts significantly.

The operational semantics of MLΠ
0 (C) is presented in the style of natural semantics, in which

type indices are never evaluated. This highlights our language design decision which requires the
reasoning on type indices be done statically. It is then proven that MLΠ

0 (C) enjoys the type
preservation property (Theorem 4.1.6). We emphasize that one can always evaluate type indices
if one chooses to. However, there is simply no such a need for doing this. Clearly, this must be
changed if run-time type-checking becomes necessary, but we currently reject all programs which
cannot pass (dependent) type-checking.

Another important aspect of MLΠ
0 (C) is that there are no more untyped expressions which are

typable in MLΠ
0 (C) than in ML0 (Theorem 4.1.9). This distinguishes our study from those which

emphasize on enriching a type system to make more expressions typable. Our objective is to assign
expressions more accurate types rather than make more expressions typable.

Theorem 4.2.5 constitutes a major contribution of the thesis. It yields a strong justification
for the methodology which we have adopted for developing dependent type systems in practical
programming. Dependent types and their usefulness in programming have been noticed for at least
three decades. However, the great difficulty in designing a type-checking algorithm for dependent
type system has always been a major obstacle which hinders the wide use of dependent types in
programming. We briefly explain the reason as follows.

In a fully dependent type system such as the one which underlies LF (Harper, Honsell, and
Plotkin 1993) or Coq (Coquand and Huet 1986), there is no differentiation between the type index

4.3. SUMMARY 79

φ ` a : b
φ ` a : b⇒ >

Σ(f) = γ → b φ ` i : γ ⇒ Φ
φ ` f(i) : b⇒ Φ

φ ` i1 : γ1 ⇒ Φ1 φ ` i2 : γ1 ⇒ Φ2

φ ` 〈i1, i2〉 : γ1 ∗ γ2 ⇒ Φ1 ∧ Φ2

φ ` i : γ ⇒ Φ1 φ, a : γ ` P : o⇒ Φ2

φ ` i : {a : γ | P} ⇒ P [a 7→ i] ∧ Φ1 ∧ ∀(a : γ).Φ2

φ ` i : γ ⇒ Φ A 6∈ label(φ)
φ;φ1 ` solve(A : γ;A .= i) ↓ (i; Φ)

φ ` i : γ ⇒ Φ A 6∈ label(φ)
φ;φ1 ` solve(A : γ; i .= A) ↓ (i; Φ)

φ;φ1, P ` solve(A : γ; Φ) ↓ (i; Φ′)
φ;φ1 ` solve(A : γ;P ⊃ Φ) ↓ (i;P ⊃ Φ′)

φ;φ1, a : γ1 ` solve(A : γ; Φ) ↓ (i; Φ′)
φ;φ1 ` solve(A : γ; ∀a : γ1.Φ) ↓ (i; ∀a : γ1.Φ′)

φ;φ1 ` solve(A : γ; Φ1) ↓ (i; Φ′1)
φ;φ1 ` solve(A : γ; Φ1 ∧ Φ2) ↓ (i; Φ′1 ∧ Φ2)

φ;φ1 ` solve(A : γ; Φ2) ↓ (i; Φ′2)
φ;φ1 ` solve(A : γ; Φ1 ∧ Φ2) ↓ (i; Φ1 ∧ Φ′2)

φ ` solves(·; Φ) ↓ ([]; Φ)

φ,A : γ ` solves(ψ; Φ) ↓ (θ,Φ′) φ; · ` solve(A : γ; Φ′) ↓ Φ′′

φ ` solves(A : γ, ψ; Φ) ↓ (θ ◦ [A 7→ i],Φ′′[A 7→ i])

φ ` elimExt(P) ↓ P
φ ` elimExt(Φ1) ↓ Φ′1 φ ` elimExt(Φ2) ↓ Φ′2

φ ` elimExt(Φ1 ∧ Φ2) ↓ Φ′1 ∧ Φ′2
φ ` elimExt(Φ) ↓ Φ′

φ ` elimExt(P ⊃ Φ) ↓ P ⊃ Φ′

φ, a : γ ` elimExt(Φ) ↓ Φ′

φ ` elimExt(∀(a : γ).Φ) ↓ ∀(a : γ).Φ′

φ, ψ ` elimExt(Φ) ↓ Φ′ φ; · ` solves(ψ; Φ′) ↓ (θ; Φ′′)
φ ` elimExt(∃(ψ).Φ) ↓ Φ′′

Figure 4.13: The rules for eliminating existential variables

80 CHAPTER 4. UNIVERSAL DEPENDENT TYPES

objects and the expressions in the system. In other words, every expression can be used as a
type index object. Suppose that we extend the type system of ML0 with such a fully dependent
type system. In this setting, the constraint domain C is the same as the programming language
itself, and therefore, Theorem 4.2.5 offers little benefit since constraint satisfaction is as difficult
as program verification, which seems to be intractable in practical programming. This intuitive
argument suggests that it may not be such an attractive idea to use fully dependent types in a
programming language.

On the other hand, if we choose C to be some relatively simple constraint domain for which
there are practical approaches to constraint satisfaction, then we are guaranteed by Theorem 4.2.5
that elaboration in MLΠ

0 (C) can be made practical. For instance, the integer constraint domain
presented in Chapter 3 falls into this category.

Although it is the burden of the programmer to provide sufficient type annotations in code,
our experience suggests that this requirement is not overwhelming (the part of type annotations
usually consist of less than 20% of the entire code). Also type annotations can be fully trusted as
program documentation since they are always verified mechanically, avoiding the “code-changes-
but-comments-stay-the-same” common symptom in programming. Given the effectiveness of de-
pendent types in program error detection and compiler optimization (Chapter 9) and the moderate
number of type annotations needed for type-checking a program, we feel that the practicality of
our approach has gained some solid justification.

Chapter 5

Existential Dependent Types

In this chapter, we further enrich the type system of MLΠ
0 (C) with existential dependent types,

yielding the language MLΠ,Σ
0 (C). We illustrate through examples the need for existential dependent

types, and then formulate the corresponding typing rules and elaboration algorithm. This is similar
to the development presented in the last chapter, although it is significantly more involved.

5.1 Existential Dependent Types

The need for existential dependent types is immediate. The following example clearly illustrates
one aspect of this point.

fun filter pred nil = nil
| filter pred (x::xs) = if pred(x) then x::filter(xs) else filter(xs)

The function filter eliminates all elements in a list which do not satisfy a given predicate. Given
a predicate p and a list l, we cannot calculate the length of filter(p)(l) in general if we only
know the types of p and l. Therefore, it is impossible to assign filter a dependent type of form
Πn : nat.intlist(n)→ intlist(i) for any index i. Intuitively, we should be able to assign filter
the type

Πm : nat.intlist(m)→ Σn : nat.intlist(n),

where Σn : nat.intlist(n) roughly means an integer list with some unknown length.
Another main reason for introducing existential dependent types is to cope with existing

(library) code. For instance, let lib be a function in a library with a (non-dependent) type
intlist → intlist. In general, we cannot refine the type of lib without the access to the
source code of lib. Again intuitively, we should be able to assign the function lib the following type

(Σn : nat.intlist(n))→ (Σn : nat.intlist(n))

in order to check the code in which lib is called (if intlist has been refined). This provides a
smooth interaction between dependent and non-dependent types.

Also existential dependent types can facilitate array bound check elimination. For example,
in some implementation of Knuth-Morris-Pratt string search algorithm, one computes an integer
array A whose elements are used later to index another array B. If we could assign array A the

81

82 CHAPTER 5. EXISTENTIAL DEPENDENT TYPES

type (Σn : nat.int(n)) array, i.e., an array of natural numbers, then we would only have to check
whether an element i in array A is less than the size of array B when we use it to index array B.
It is unnecessary to check whether i is nonnegative since the type of i, Σn : nat.int(n), already
implies this. We refer the reader to the code in Section A.1 for more details.

Our experience indicates that existential dependent types are indispensable in practice. For
instance, almost all the examples in Appendix A use some existential dependent types.

We now enrich the language MLΠ
0 (C) with existential dependent types, and call the enriched

language MLΠ,Σ
0 (C). In addition to the syntax of MLΠ

0 (C), we need the following.

types τ ::= . . . | (Σa : γ.τ)
expressions e ::= . . . | 〈i | e〉 | let 〈a | x〉 = e1 in e2 end
value forms u ::= . . . | 〈i | u〉
values v ::= . . . | 〈i | v〉

The formation of an existential dependent type is given as follows.

φ, a : γ ` τ : ∗
φ ` (Σa : γ.τ) : ∗ (type-sig)

Also the following rule is needed for extending the type congruence relation to including existential
dependent types.

φ, a : γ |= τ ≡ τ ′

φ |= Σa : γ.τ ≡ Σa : γ.τ ′

The typing rules for existential dependent types are given below. Note that (ty-sig-elim) can be
applied only if a has no free occurrence in Γ and τ2.

φ; Γ ` e : τ [a 7→ i] φ ` i : γ
φ; Γ ` 〈i | e〉 : (Σa : γ.τ)

(ty-sig-intro)

φ; Γ ` e1 : (Σa : γ.τ1) φ, a : γ; Γ, x : τ1 ` e2 : τ2

φ; Γ ` let 〈a | x〉 = e1 in e2 end : τ2
(ty-sig-elim)

In addition to the evaluation rules in Figure 4.6, we need the following rules to formulate the
natural semantics of MLΠ,Σ

0 (C).

e ↪→d v

〈i | e〉 ↪→d 〈i | v〉
(ev-sig-intro)

e1 ↪→d 〈i | v1〉 e2[a 7→ i][x 7→ v1] ↪→d v2

let 〈a | x〉 = e1 in e2 end ↪→d v2
(ev-sig-elim)

Now let us prove some expected properties of MLΠ,Σ
0 (C). This part of the development of

MLΠ,Σ
0 (C) is parallel to that of MLΠ

0 (C).

Theorem 5.1.1 (Type preservation in MLΠ,Σ
0 (C)) Given e, v in MLΠ,Σ

0 (C) such that e ↪→d v is
derivable. If φ; Γ ` e : τ is derivable, then φ; Γ ` v : τ is derivable.

Proof The theorem follows from a structural induction on the derivation D of e ↪→d v and the
derivation of φ; Γ ` e : τ , lexicographically ordered. This is similar to the proof of Theorem 4.1.6
We present several cases.

5.1. EXISTENTIAL DEPENDENT TYPES 83

e1 ↪→d v1
D =
〈i | e1〉 ↪→d 〈i | v1〉 The last applied rule in the derivation φ; Γ ` e : τ is of the following

form.
φ; Γ ` e1 : τ1[a 7→ i] φ ` i : γ

φ; Γ ` 〈i | e1〉 : Σa : γ.τ1
(ty-sig-intro)

By induction hypothesis, φ; Γ ` v1 : τ1[a 7→ i] is derivable, and this leads to the following.

φ; Γ ` v1 : τ1[a 7→ i] φ ` i : γ
φ; Γ ` 〈i | v1〉 : Σa : γ.τ1

(ty-sig-intro)

e1 ↪→d 〈i | v1〉 e2[a 7→ i][x 7→ v1] ↪→d v2
D =

let 〈a | x〉 = e1 in e2 end ↪→d v2 The last rule in the derivation of φ; Γ ` e : τ is
of form:

φ; Γ ` e1 : Σa : γ.τ1 φ, a : γ; Γ, x : τ1 ` e2 : τ2

φ; Γ ` let 〈a | x〉 = e1 in e2 end : τ
(ty-sig-elim)

.

By induction hypothesis, φ; Γ ` 〈i | v1〉 : Σa : γ.τ1 is derivable. This implies that φ ` i : γ
and φ; Γ ` v1 : τ1[a 7→ i] are derivable. Since φ, a : γ; Γ, x : τ1 ` e2 : τ2 is derivable and
a has no free occurrences in Γ and τ2, a proof of φ; Γ ` e2[a 7→ i][x 7→ v1] : τ2 can also be
constructed. By induction hypothesis, φ; Γ ` v2 : τ2 is derivable.

The other cases can be treated similarly.

We extend the definition of the index erasure function ‖ · ‖ as follows.

‖〈i | e〉‖ = ‖e‖
‖let 〈a | x〉 = e1 in e2 end‖ = let x = ‖e1‖ in ‖e2‖ end

Then Theorem 4.1.9, Theorem 4.1.10 and Theorem 4.1.12 all have their corresponding versions in
MLΠ,Σ

0 (C), which we mention briefly as follows.

Theorem 5.1.2 If φ; Γ ` e : τ is derivable in MLΠ,Σ
0 (C), then ‖Γ‖ ` ‖e‖ : ‖τ‖ is derivable in

ML0.

Proof This simply follows from a structural induction on the derivation D of φ; Γ ` e : τ . We
present some cases.

φ; Γ ` e1 : τ1[a 7→ i] φ ` i : γ
D =

φ; Γ ` 〈i | e1〉 : Σa : γ.τ1 By induction hypothesis, ‖Γ‖ ` ‖e1‖ : ‖τ1[a 7→ i]‖ is deriv-
able. Since ‖τ1[a 7→ i]‖ = ‖τ1‖ = ‖Σa : γ.τ1‖ and ‖〈i | e1〉‖ = ‖e1‖, we are done.

φ; Γ ` e1 : (Σa : γ.τ1) φ, a : γ; Γ, x : τ1 ` e2 : τ2
D =

φ; Γ ` let 〈a | x〉 = e1 in e2 end : τ2 By induction hypothesis, ‖Γ‖ ` ‖e1‖ :
‖Σa : γ.τ1‖ and ‖Γ, x : τ1‖ ` ‖e2‖ : ‖τ2‖ are derivable. Since ‖Σa : γ.τ1‖ = ‖τ1‖ and
‖Γ, x : τ1‖ = ‖Γ‖, x : ‖τ1‖, this leads to the following.

‖Γ‖ ` ‖e1‖ : ‖τ1‖ ‖Γ‖, x : ‖τ1‖ ` ‖e2‖ : ‖τ2‖
‖Γ‖ ` let x = ‖e1‖ in ‖e2‖ end : ‖τ2‖

(ty-let)

84 CHAPTER 5. EXISTENTIAL DEPENDENT TYPES

Note that ‖let 〈a | x〉 = e1 in e2 end‖ is let x = ‖e1‖ in ‖e2‖ end, and we are done.

All other cases can be treated similarly.

Like MLΠ
0 (C), the evaluation in MLΠ,Σ

0 (C) can be simulated by the evaluation in ML0. This is
stated in the theorem below.

Theorem 5.1.3 If e ↪→d v derivable in MLΠ,Σ
0 (C), then ‖e‖ ↪→0 ‖v‖ is derivable in ML0.

Proof This simply follows from a structural induction on the derivation D of e ↪→d v. We present
a few cases as follows.

e1 ↪→d v1
D =
〈i | e1〉 ↪→d 〈i | v1〉 Then ‖e1‖ ↪→0 ‖v1‖ is derivable by induction hypothesis. Since

‖〈i | e1〉‖ = ‖e1‖ and ‖〈i | v1〉‖ = ‖v1‖,

we are done.

e1 ↪→d 〈i | v1〉 e2[a 7→ i][x 7→ v1] ↪→d v
D =

let 〈a | x〉 = e1 in e2 end ↪→d v By induction hypothesis, both

‖e1‖ ↪→0 ‖〈i | v1〉‖ and ‖e2[a 7→ i][x 7→ v1]‖ ↪→0 ‖v‖

are derivable. Note ‖〈i | v1〉‖ = ‖v1‖ and ‖e2[a 7→ i][x 7→ v1]‖ = ‖e2‖[x 7→ ‖v1‖]. This leads
to the following.

‖e1‖ ↪→0 ‖v1‖ ‖e2‖[x 7→ ‖v1‖] ↪→0 ‖v‖
let x = ‖e1‖ in ‖e2‖ end ↪→0 v

(ev-let)

Since ‖let 〈a | x〉 = e1 in e2 end‖ is let x = ‖e1‖ in ‖e2‖ end, we are done.

All other cases can be handled similarly.

Like Lemma 4.1.11, the following lemma is needed in the proof of Theorem 5.1.5.

Lemma 5.1.4 Given a value v1 in MLΠ,Σ
0 (C) such that φ; · ` v1 : Σa : γ.τ is derivable, v1 must

be of form 〈i | v2〉 for some value v2.

Proof This follows from a structural induction on the derivation D of v1.

φ; · ` v1 : τ1 φ |= τ1 ≡ Σa : γ.τ
D =

φ; · ` v1 : Σa : γ.τ Then τ1 must be of form Σa : γ.τ ′1. By induction hy-
pothesis, v1 has the claimed form.

φ; · ` v : τ [a 7→ i] φ ` i : γ
D =

φ; · ` 〈i | v〉 : (Σa : γ.τ) Then v1 is 〈i | v〉, and we are done.

Note that the last applied rule in D cannot be (ty-var). Since v1 is a value, no other rules can be
the last applied rule in D. This concludes the proof.

5.2. ELABORATION 85

Theorem 5.1.5 Given φ; · ` e : τ derivable in MLΠ
0 (C). If e0 = ‖e‖ ↪→0 v0 is derivable for

some value v0 in ML0, then there exists a value v in MLΠ,Σ
0 (C) such that e ↪→d v is derivable and

‖v‖ = v0.

Proof The theorem follows from a structural induction on the derivation of e0 ↪→0 v
0 and the

derivation D of φ; · ` e : τ , lexicographically ordered. We present a few cases.

φ; · ` e1 : τ1[a 7→ i] φ ` i : γ
D =

φ; · ` 〈i | e1〉 : (Σa : γ.τ1) Then ‖〈i | e1〉‖ = ‖e1‖ ↪→0 v0 is derivable in ML0. By

induction hypothesis, e1 ↪→d v1 is derivable in MLΠ,Σ
0 (C) such that ‖v1‖ = v0. This yields

the following.
e1 ↪→d v1

〈i | e1〉 ↪→d 〈i | v1〉
(ev-sig-intro)

Note that ‖〈i | v1〉‖ = ‖v1‖ = v0, and we are done.

φ; · ` e1 : (Σa : γ.τ1) φ, a : γ;x : τ1 ` e2 : τ
D =

φ; · ` let 〈a | x〉 = e1 in e2 end : τ Then the derivation of ‖e‖ ↪→0 v0 is of the
following form

‖e1‖ ↪→0 v
0
1 ‖e2‖[x 7→ v0

1] ↪→0 v
0

let x = ‖e1‖ in ‖e2‖ end ↪→0 v
0

(ev-let)

By induction hypothesis, e1 ↪→d v1 is derivable for some v1 such that ‖v1‖ = v0
1. By The-

orem 5.1.1, φ; · ` v1 : (Σa : γ.τ1) is derivable. Therefore, Lemma 5.1.4 implies that v1 is
of form 〈i | v2〉 for some v2. It then follows that both φ; · ` v2 : τ1[a 7→ i] and φ ` i : γ
are derivable. This leads to a derivation of φ; · ` e2[a 7→ i][x 7→ v2] : τ since τ contains no
free occurrences of a. Notice ‖e2[a 7→ i][x 7→ v2]‖ = ‖e2‖[x 7→ v0

1]. By induction hypothesis,
e2[a 7→ i][x 7→ v2] ↪→d v is derivable for some v such that ‖v‖ = v0. Hence, we have the
following, and we are done.

e1 ↪→d 〈i | v2〉 e2[a 7→ i][x 7→ v2] ↪→d v

let 〈a | x〉 = e1 in e2 end ↪→d v
(ev-sig-elim)

All other cases can be handled similarly.

As a consequence, it is straightforward to conclude that MLΠ,Σ
0 (C), like MLΠ

0 (C), is also a conser-
vative extension of ML0.

5.2 Elaboration

In order to make MLΠ,Σ
0 (C) suitable as a practical programming language, we have to be able to

design a satisfactory elaboration algorithm from DML(C) to MLΠ,Σ
0 (C), where DML(C) is basically

the external language DML0(C) present in Section 4.2 except that existential dependent types are
allowed now. This turns out to be a challenging task.

We present a typical conflict which we are facing in order to do elaboration in this setting.
Let us assign the type Πn : nat.intlist(n) → intlist(n) to the function rev which reverses

86 CHAPTER 5. EXISTENTIAL DEPENDENT TYPES

an integer list. Suppose that rev(l) occurs in the code, where l is an integer list. Intuitively, we
synthesize rev to rev[i] for some index i subject to the satisfiability of the index constraints, and
then we check l against type intlist(i). Suppose we then need to synthesize l, obtaining some
l∗ with type Σn : nat.intlist(n). We now get stuck because l∗ cannot be (successfully) checked
against intlist(i) for whatever i is, and a type error should then be reported. Nonetheless, it
seems quite natural in this case to elaborate rev(l) into

let 〈a | x〉 = l∗ in 〈a | rev[a](x)〉 end,

which is of type Σa : nat.intlist(a). This justifies the intuition that reversing a list with unknown
length yields a list with unknown length 1. The crucial step is to unpack l before we synthesize rev
to rev[i]. Also notice that this elaboration of rev(l) does not alter the operational semantics of
rev(l), although it changes the structure of the expression significantly.

This example suggest that we transform rev(l) into let x = l in rev(x) end before elaboration.
In general, we can define a variant of A-normal transform (Moggi 1989; Sabry and Felleisen 1993)
as follows, which transforms expressions e in DML(C) into e.

x = x
lam x.e = lam x.e

lam x : τ.e = lam x : τ.e
fix f.e = fix f.e

fix f : τ.e = fix f : τ.e
〈〉 = 〈〉
c = c

c(e) = let x = e in c(x) end
case e of ms = let x = e in case x of ms end

p⇒ e = p⇒ e
〈e1, e2〉 = let x1 = e1 in let x2 = e2 in 〈x1, x2〉 end end
e1(e2) = let x1 = e1 in let x2 = e2 in x1(x2) end end

let x = e1 in e2 end = let x = e1 in e2 end
e : τ = e : τ

The following proposition shows that e preserves the operational semantics of the transformed
expression e.

Proposition 5.2.1 We have |e| ∼= |e| for all expressions e in DML(C).

Proof With Corollary 2.3.13, this follows from a structural induction on e.

The strategy to transform e into e before elaborating e means that we must synthesize the types
of e1 and e2 in order to synthesize the type of an application e1(e2) since it is transformed into
let x1 = e1 in let x2 = e2 in x1(x2) end end. Clearly, this strategy rules out the following style
of elaboration, which would otherwise exist. For instance, let us assume that the type of e1

1It is tempting to require that reversing a list with unknown length yield a list with the same unknown length.
This, however, is not helpful to justify that 〈l, rev(l)〉 is a pair of lists with the same length if we enrich our language
further to include e�ects. If l has no e�ects, this can be achieved using let x = l in 〈x, rev(x)〉 end.

5.2. ELABORATION 87

is Πa : γ.(δ(a) → δ(a)) → δ(a) and e2 is lam x.x; then synthesizing the type of e2 is clearly
impossible but the type of e1(e2) can nonetheless be synthesized as follows.

φ; Γ ` e1 ↑ Πa : γ.(δ(a)→ δ(a))→ δ(a)⇒ e∗1
φ; Γ ` e1 ↑ (δ(i)→ δ(i))→ δ(i)⇒ e∗1[i] φ; Γ ` e2 ↓ δ(i)→ δ(i)⇒ (lam x : δ(i).x)

φ; Γ ` e1(e2) ↑ δ(i)⇒ e∗1[i](lam x : δ(i).x)

It has been observed that this style of programming does occur occasionally in practice. Therefore,
we are prompted with a question about whether the above transform should always be performed
before elaboration begins. There is no clear answer to this question at this moment. On one hand,
we may require that the programmer perform the transform manually but this could be too much
of a burden. On the other hand, if the transform is always performed automatically, then we may
lose the ability to elaborate some programs which would otherwise be possible. More importantly,
this could make it much harder to report informative error messages during type-checking. Given
that this issue has yet to be settled in practice, it is desirable for us to separate from elaboration
the issue of transforming programs. We will address in Chapter 8 the practical issues involving
program transform before elaboration.

In the following presentation, we will use ~a for a (possibly empty) sequence of index variables
and ~γ for a (possibly empty) sequence of sorts. Also we use ~a : ~γ for a sequence of declarations
a1 : γ1, . . . , an : γn, where ~a = a1, . . . , an and ~γ = γ1, . . . , γn, and Σ(~a : ~γ).τ for the following.

Σ(a1 : γ1) . . .Σ(an : γn).τ.

We use 〈~a | e〉 and let 〈~a | x〉 = e1 in e2 end for the abbreviations defined as follows. If ~a is
empty, we have

〈~a | e〉 = e let 〈~a | x〉 = e1 in e2 end = let x = e1 in e2 end

and if ~a is a, ~a1, we have

〈~a | e〉 = 〈a | 〈 ~a1 | e〉〉
let 〈~a | x〉 = e1 in e2 end = let 〈a | x1〉 = e1 in let 〈 ~a1 | x〉 = x1 in e2 end end

The following proposition presents some properties related to these abbreviations.

Proposition 5.2.2 We have the following.

1. |let 〈~a | x〉 = e1 in e2 end| ∼= let x = |e1| in |e2| end for expressions e1, e2 in MLΠ,Σ
0 (C).

2. Suppose that both φ; Γ ` e1 : Σ(~a : ~γ).τ1 and φ,~a : ~γ; Γ, x : τ1 ` e2 : τ2 are derivable. If none
of the variables in ~a have free occurrences in τ2 then φ; Γ ` let 〈~a | x〉 = e1 in e2 end : τ2 is
derivable.

Proof (1) simply follows from Corollary 2.3.13, and (2) follows from an induction on the number
of index variables declared in ~a.

In addition, the above rev(l) example suggests that we turn both the rules (elab-let-up)
and (elab-let-down) into the following forms, respectively. In other words, we always unpack a
let-bound expression if its synthesized type begins with existential quantifiers.

φ; Γ ` e1 ↑ Σ(~a : ~γ).τ1 ⇒ e∗1 φ,~a : ~γ; Γ, x : τ1 ` e2 ↑ τ2 ⇒ e∗2
φ; Γ ` let x = e1 in e2 end ↑ Σ(~a : ~γ).τ2 ⇒ let 〈~a | x〉 = e∗1 in 〈~a | e∗2〉 end

88 CHAPTER 5. EXISTENTIAL DEPENDENT TYPES

φ; Γ ` e1 ↑ Σ(~a : ~γ).τ1 ⇒ e∗1 φ,~a : ~γ; Γ, x : τ1 ` e2 ↓ τ2 ⇒ e∗2
φ; Γ ` let x = e1 in e2 end ↓ τ2 ⇒ let 〈~a | x〉 = e∗1 in e∗2 end

The rule (elab-case) must be dealt with similarly.
There is yet another issue. Suppose that we need to check an expression e against a type τ . If

e is a variable or an application, we must synthesize the type of e, obtaining some type τ ′. At this
stage, we need to check whether an expression of type τ ′ can be coerced into one of type τ . The
strategy used in the elaboration for MLΠ

0 (C) is simply to check whether τ ′ ≡ τ holds. However,
this strategy is highly unsatisfactory for MLΠ,Σ

0 (C) in practice. We are thus motivated to design a
more effective approach to coercion.

5.2.1 Coercion

Given types τ1 and τ2 in MLΠ,Σ
0 (C) such that ‖τ1‖ = ‖τ2‖, a coercion from τ1 to τ2 is an evaluation

context E such that for every expression e of type τ1, E[e] is of type τ2 and |e| ∼= |E[e]|.
In Figure 5.1 we present the rules for coercion in MLΠ,Σ

0 (C). A judgement of form φ `
coerce(τ, τ ′)⇒ E means that every expression e of type τ can be coerced into expression E[e] of
type τ ′.

Example 5.2.3 We show that the type τ = Πa : γ.δ(a) → δ(a) can be coerced into the type
τ ′ = Πa : γ.δ(a)→ Σb : γ.δ(b).

a : γ |= a
.= a

a : γ ` coerce(δ(a), δ(a))⇒ []

a : γ |= a
.= a

a : γ ` coerce(δ(a), δ(a))⇒ []
a : γ ` coerce(δ(a),Σb : γ.δ(b))⇒ 〈a | []〉

a : γ ` coerce(δ(a)→ δ(a), δ(a)→ Σb : γ.δ(b))⇒ let x1 = [] in lam x2 : δ(a).〈a | x1(x2)〉 end
a : γ ` coerce(τ, δ(a)→ Σb : γ.δ(b))⇒ let x1 = [][a] in lam x2 : δ(a).〈a | x1(x2)〉 end

· ` coerce(τ, τ ′)⇒ λa : γ.let x1 = [][a] in lam x2 : δ(a).〈a | x1(x2)〉 end

We are ready to prove the correctness of these coercion rules, which is stated as Theorem 5.2.4.

Theorem 5.2.4 If φ; Γ ` e : τ and φ ` coerce(τ, τ ′) ⇒ E are derivable, then φ; Γ ` E[e] : τ is
also derivable and |e| ∼= |E[e]|.

Proof This follows from a structural induction on the derivation D of φ ` coerce(τ, τ ′) ⇒ E.
We present several cases.

φ ` coerce(τ1, τ
′
1)⇒ E1 φ ` coerce(τ2, τ

′
2)⇒ E2

D =
φ ` coerce(τ1 ∗ τ2, τ

′
1 ∗ τ ′2)⇒ case [] of 〈x1, x2〉 ⇒ 〈E1[x1], E2[x2]〉 By induction hypoth-

esis, φ; Γ, x1 : τ1, x2 : τ2 ` E1[x1] : τ ′1 and φ; Γ, x1 : τ1, x2 : τ2 ` E2[x2] : τ ′2 are derivable. This
leads to the following derivation,

φ; Γ ` e : τ1 ∗ τ2

〈x1, x2〉 ↓ τ1 ∗ τ2 � (·;x1 : τ1, x2 : τ2) D0

φ; Γ ` 〈x1, x2〉 ⇒ 〈E1[x1], E2[x2]〉 : τ1 ∗ τ2 ⇒ τ ′1 ∗ τ ′2
(ty-match)

φ; Γ ` (case e of 〈x1, x2〉 ⇒ 〈E1[x1], E2[x2]〉) : τ ′1 ∗ τ ′2
(ty-case)

5.2. ELABORATION 89

φ |= i
.= j

φ ` coerce(δ(i), δ(j))⇒ []
(coerce-datatype)

` φ[ictx]
φ ` coerce(1,1)⇒ []

(coerce-unit)

φ ` coerce(τ1, τ
′
1)⇒ E1 φ ` coerce(τ2, τ

′
2)⇒ E2

φ ` coerce(τ1 ∗ τ2, τ
′
1 ∗ τ ′2)⇒ case [] of 〈x1, x2〉 ⇒ 〈E1[x1], E2[x2]〉

(coerce-prod)

φ ` coerce(τ ′1, τ1)⇒ E1 φ ` coerce(τ2, τ
′
2)⇒ E2

φ ` coerce(τ1 → τ2, τ
′
1 → τ ′2)⇒ let x1 = [] in lam x2 : τ ′1.E2[x1(E1[x2])] end

(coerce-fun)

φ ` coerce(τ1[a 7→ i], τ)⇒ E φ ` i : γ
φ ` coerce(Πa : γ.τ1, τ)⇒ E[[][i]]

(coerce-pi-l)

φ, a : γ ` coerce(τ1, τ)⇒ E

φ ` coerce(τ1,Πa : γ.τ)⇒ λa : γ.E
(coerce-pi-r)

φ, a : γ ` coerce(τ1, τ)⇒ E

φ ` coerce(Σ(a : γ).τ1, τ)⇒ let 〈a | x〉 = [] in E[x] end
(coerce-sig-l)

φ ` coerce(τ1, τ [a 7→ i])⇒ E φ ` i : γ
φ ` coerce(τ1,Σ(a : γ).τ)⇒ 〈i | E〉 (coerce-sig-r)

Figure 5.1: The derivation rules for coercion

90 CHAPTER 5. EXISTENTIAL DEPENDENT TYPES

where D0 is the following.

φ; Γ, x1 : τ1, x2 : τ2 ` E1[x1] : τ ′1 φ; Γ, x1 : τ1, x2 : τ2 ` E2[x2] : τ ′2
φ; Γ, x1 : τ1, x2 : τ2 ` 〈E1[x1], E2[x2]〉 : τ ′1 ∗ τ ′2

(ty-prod)

In addition, we have x1
∼= |E1[x1]| and x2

∼= |E2[x2]|. Therefore,

|case e of 〈x1, x2〉 ⇒ 〈E1[x1], E2[x2]〉| ∼= |case e of 〈x1, x2〉 ⇒ 〈x1, x2〉|

Since e is of type τ1 ∗ τ2, it can then be shown that |e| ∼= |case e of 〈x1, x2〉 ⇒ 〈x1, x2〉|.

φ ` coerce(τ ′1, τ1)⇒ E1 φ ` coerce(τ2, τ
′
2)⇒ E2

D =
φ ` coerce(τ1 → τ2, τ

′
1 → τ ′2)⇒ let x1 = [] in lam x2 : τ ′1.E2[x1(E1[x2])] end By induction

hypothesis, φ; Γ, x2 : τ ′1 ` E1[x2] : τ1 is derivable. This leads to the following.

φ; Γ, x1 : τ1 → τ2, x2 : τ ′1 ` x1 : τ1 → τ2 φ; Γ, x1 : τ1 → τ2, x2 : τ ′1 ` E1[x2] : τ1

φ; Γ, x1 : τ1 → τ2, x2 : τ ′1 ` x1(E1[x2]) : τ2
(ty-app)

Then by induction hypothesis again, φ; Γ, x1 : τ1 → τ2, x2 : τ ′1 ` E2[x1(E1[x2])] : τ ′2 is
derivable, and this yields the following.

φ; Γ ` e : τ1 → τ2

φ; Γ, x1 : τ1 → τ2, x2 : τ ′1 ` E2[x1(E1[x2])] : τ ′2
φ; Γ, x1 : τ1 → τ2 ` lam x2 : τ ′1.E2[x1(E1[x2])] : τ ′1 → τ ′2

(ty-lam)

φ; Γ ` let x1 = e in lam x2 : τ ′1.E2[x1(E1[x2])] end : τ ′1 → τ ′2
(ty-let)

Also we have the following since φ; Γ ` e : τ1 → τ2 is derivable.

|let x1 = e in lam x2 : τ ′1.E2[x1(E1[x2])] end|
= let x1 = |e| in lam x2.|E2[x1(E1[x2])]| end
∼= let x1 = |e| in lam x2.x1(x2) end
∼= let x1 = |e| in x1 end (by Proposition 2.3.14 (1))
∼= |e|

This wraps up the case.

φ ` coerce(τ1[a 7→ i], τ)⇒ E φ ` i : γ
D =

φ ` coerce(Πa : γ.τ1, τ)⇒ E[[]i] Since φ; Γ ` e : Πa : γ.τ1, we have the following.

φ; Γ ` e : Πa : γ.τ1 φ ` i : γ
φ; Γ ` e[i] : τ1[a 7→ i]

(ty-iapp)

By induction hypothesis, φ; Γ ` E[e[i]] : τ is derivable and |e[i]| ∼= |E[e[i]]|. Note |e| = |e[i]|,
and we are done.

φ, a : γ ` coerce(τ1, τ)⇒ E
D =

φ ` coerce(τ1,Πa : γ.τ)⇒ λa.γ.E By induction hypothesis, φ, a : γ; Γ ` E[e] : τ is
derivable and |e| ∼= |E[e]|. Since there are no free occurrences of a in the types of the
variables declared in Γ, we have the following.

φ, a : γ; Γ ` E[e] : τ
φ, a : γ; Γ ` λa : γ.E[e] : τ

(ty-ilam)

Also |λa : γ.E[e]| = |E[e]| ∼= |e|. Hence we are done.

5.2. ELABORATION 91

φ, a : γ ` coerce(τ1, τ)⇒ E
D =

φ ` coerce(Σ(a : γ).τ1, τ)⇒ let 〈a | x〉 = [] in E[x] end By induction hypothesis, φ, a :
γ; Γ, x : τ1 ` E[x] : τ is derivable. This leads to the following.

φ; Γ ` e : Σ(a : γ).τ1 φ, a : γ; Γ, x : τ1 ` E[x] : τ
φ; Γ ` let 〈a | x〉 = e in E[x] end

(ty-sig-elim)

Notice that

|let 〈a | x〉 = e in E[x] end| = let x = |e| in |E[x]| end ∼= let x = |e| in x end ∼= |e|.

Hence we are done.

φ ` coerce(τ1, τ [a 7→ i])⇒ E φ ` i : γ
D =

φ ` coerce(τ1,Σ(a : γ).τ)⇒ 〈i | E〉 By induction hypothesis, φ; Γ ` E[e] : τ [a 7→ i]
is derivable and |e| ∼= |E[e]|. This leads to the following.

φ; Γ ` E[e] : τ [a 7→ i] φ ` i : γ
φ; Γ ` 〈i | E[e]〉 : Σa : γ.τ

(ty-sig-intro)

Also |〈i | E[e]〉| = |E[e]| ∼= |e|, and we are done.

All the rest of cases can be treated similarly.

As usual, there is a gap between the elaboration rules for coercion and their implementation.
We bridge the gap by presenting the constraint generation rules for coercion in Figure 5.2. A
judgement of form φ [̀ψ] coerce(τ, τ ′)⇒ Φ means that coercing τ into τ ′ under context φ yields
a constraint Φ in which all existential variables are declared in ψ.

Theorem 5.2.5 Assume that φ `[ψ] coerce(τ, τ ′) ⇒ Φ is derivable. If φ[θ] |= Φ[θ] is derivable
for some existential substitution θ such that φ� θ : ψ holds, then φ[θ] ` coerce(τ [θ], τ ′[θ])⇒ E is
derivable for some evaluation context E.

Proof The proof proceeds by a structural induction on the derivation D of φ [̀ψ] coerce(τ, τ ′)⇒
Φ. We present a few cases.

φ [̀ψ] coerce(τ1, τ
′
1)⇒ Φ1 φ [̀ψ] coerce(τ2, τ

′
2)⇒ Φ2

D =
φ [̀ψ] coerce(τ1 ∗ τ2, τ

′
1 ∗ τ ′2)⇒ Φ1 ∧ Φ2 Then φ[θ] |= (Φ1∧Φ2)[θ] is deriv-

able, and this implies both φ[θ] |= Φ1[θ] and φ[θ] |= Φ2[θ] are derivable. By induction hy-
pothesis, there are evaluation contexts E1 and E2 such that φ[θ] ` coerce(τ1[θ], τ ′1[θ])⇒ E1

and φ[θ] ` coerce(τ2[θ], τ ′2[θ])⇒ E2 are derivable. This yields the following.

φ[θ] ` coerce(τ1[θ], τ ′1[θ])⇒ E1 φ[θ] ` coerce(τ2[θ], τ ′2[θ])⇒ E2

φ[θ] ` coerce(τ1[θ] ∗ τ2[θ], τ ′1[θ] ∗ τ ′2[θ])⇒ case [] of 〈x1, x2〉 ⇒ 〈E1[x1], E2[x2]〉

92 CHAPTER 5. EXISTENTIAL DEPENDENT TYPES

(φ | ψ) ` δ(i) (φ | ψ) ` δ(j)
φ [̀ψ] coerce(δ(i), δ(j))⇒ i

.= j
(co-constr-datatype)

` (φ | ψ)[ictx]
φ [̀ψ] coerce(1,1)⇒ > (co-constr-unit)

φ [̀ψ] coerce(τ1, τ
′
1)⇒ Φ1 φ [̀ψ] coerce(τ2, τ

′
2)⇒ Φ2

φ [̀ψ] coerce(τ1 ∗ τ2, τ
′
1 ∗ τ ′2)⇒ Φ1 ∧ Φ2

(co-constr-prod)

φ [̀ψ] coerce(τ ′1, τ1)⇒ Φ1 φ [̀ψ] coerce(τ2, τ
′
2)⇒ Φ2

φ [̀ψ] coerce(τ1 → τ2, τ
′
1 → τ ′2)⇒ Φ1 ∧ Φ2

(co-constr-fun)

φ [̀ψ,A : γ] coerce(τ1[a 7→ A], τ)⇒ Φ
φ [̀ψ] coerce(Πa : γ.τ1, τ)⇒ ∃A : γ.Φ

(co-constr-pi-l)

φ, aψ : γ [̀ψ] coerce(τ1, τ [a 7→ aψ])⇒ Φ
φ [̀ψ] coerce(τ1,Πa : γ.τ)⇒ ∀(aψ : γ).Φ

(co-constr-pi-r)

φ, aψ : γ [̀ψ] coerce(τ1[a 7→ aψ], τ)⇒ Φ
φ [̀ψ] coerce(Σ(a : γ).τ1, τ)⇒ ∀(aψ : γ).Φ

(co-constr-sig-l)

φ [̀ψ,A : γ] coerce(τ1, τ [a 7→ A])⇒ Φ
φ [̀ψ] coerce(τ1,Σ(a : γ).τ)⇒ ∃A : γ.Φ

(co-constr-sig-r)

Figure 5.2: The constraint generation rules for coercion

5.2. ELABORATION 93

φ [̀ψ,A : γ] coerce(τ1[a 7→ A], τ)⇒ Φ1
D =

φ [̀ψ] coerce(Πa : γ.τ1, τ)⇒ ∃A : γ.Φ1 Then φ[θ] |= (∃A : γ.Φ1)[θ] is derivable. Since
(∃A : γ.Φ1)[θ] is ∃A : γ[θ].Φ1[θ], there exists some i such that φ[θ] ` i : γ[θ] and φ[θ] |= Φ1[θ1]
for θ1 = θ[A 7→ i]. Clearly, φ[θ1] = φ[θ]. By induction hypothesis,

φ[θ1] ` coerce(τ [θ1], τ ′[θ1])⇒ E1

is derivable for some evaluation context E1. Note (τ1[a 7→ A])[θ1] = (τ1[a 7→ i])[θ] and
τ [θ1] = τ [θ]. This leads to the following.

φ[θ] ` coerce(τ1[θ][a 7→ i], τ [θ])⇒ E1 φ[θ] ` i : γ[θ]
φ[θ] ` coerce(Πa : γ.τ1[θ], τ [θ])⇒ E1[[][i]]

(co-constr-pi-l)

φ, aψ : γ [̀ψ] coerce(τ1[a 7→ aψ], τ)⇒ Φ1
D =

φ [̀ψ] coerce(Σa : γ.τ1, τ)⇒ ∀(aψ : γ).Φ1 Then φ[θ] |= (Πaψ : γ.Φ1)[θ] is derivable for

some θ such that φ � θ : ψ holds. Notice that (Πaψ : γ.Φ1)[θ] is Πaψ : γ[θ].Φ1[θ]. Hence,
φ[θ], aψ : γ[θ] |= Φ1[θ] is derivable. By induction hypothesis, the following is derivable for
some E1.

φ[θ], aψ : γ[θ] ` coerce((τ1[a 7→ aψ])[θ], τ [θ])⇒ E1

Note that (τ1[a 7→ aψ])[θ] = τ1[θ][a 7→ aψ]. This leads to the following.

φ[θ], aψ : γ[θ] ` coerce(τ1[θ][a 7→ aψ], τ [θ])⇒ E1

φ[θ] ` coerce(Σa : γ[θ].τ1[θ], τ [θ])⇒ let 〈a | x〉 = [] in E1[x] end
(co-constr-sig-l)

Hence, we are done.

All other cases can be handled similarly.

We now have justified the correctness of the constraint generation rules for coercion. However,
there is still some indeterminacy in these rules, which we will address in Chapter 8.

5.2.2 Elaboration as Static Semantics

We list the elaboration rules for MLΠ,Σ
0 (C) in Figure 5.3 and Figure 5.4. The meaning of the

judgements φ; Γ ` e ↑ τ ⇒ e∗ and φ; Γ ` e ↓ τ ⇒ e∗ are basically the same as that of the
judgements given in Figure 4.9 and Figure 4.10.

The following theorem justifies the correctness of these rules.

Theorem 5.2.6 We have the following.

1. If φ; Γ ` e ↑ τ ⇒ e∗ is derivable, then φ; Γ ` e∗ : τ is derivable and |e| ∼= |e∗|.

2. If φ; Γ ` e ↓ τ ⇒ e∗ is derivable, then φ; Γ ` e∗ : τ is derivable and |e| ∼= |e∗|.

Proof The proof is parallel to that of Theorem 4.2.2. (1) and (2) follow straightforwardly from a
simultaneous structural induction on the derivations D of φ; Γ ` e ↑ τ ⇒ e∗ and φ; Γ ` e ↓ τ ⇒ e∗.
We present a few cases.

94 CHAPTER 5. EXISTENTIAL DEPENDENT TYPES

φ; Γ ` e ↑ Πa : γ.τ ⇒ e∗ φ ` i : γ
φ; Γ ` e ↑ τ [a 7→ i]⇒ e∗[i]

(elab-pi-elim)

φ, a : γ; Γ ` e ↓ τ ⇒ e∗

φ; Γ ` e ↓ Πa : γ.τ ⇒ (λa : γ.e∗)
(elab-pi-intro-1)

φ, a : γ; Γ ` e ↓ τ ⇒ e∗

φ; Γ ` λa : γ.e ↓ Πa : γ.τ ⇒ (λa : γ.e∗)
(elab-pi-intro-2)

φ; Γ ` e ↓ τ [a 7→ i]⇒ e∗ φ ` i : γ
φ; Γ ` e ↓ Σa : γ.τ ⇒ 〈i | e∗〉 (elab-sig-intro)

Γ(x) = τ φ ` Γ[ctx]
φ; Γ ` x ↑ τ ⇒ x

(elab-var-up)

φ; Γ ` x ↑ τ1 ⇒ e∗ φ ` coerce(τ1, τ2)⇒ E

φ; Γ ` x ↓ τ2 ⇒ E[e∗]
(elab-var-down)

S(c) = Πa1 : γ1 . . .Πan : γn.δ(i) φ ` i1 : γ1 · · · φ ` in : γn
φ; Γ ` c ↑ δ(i[a1, . . . , an 7→ i1, . . . in])⇒ c[i1] . . . [in]

(elab-cons-wo-up)

φ; Γ ` c ↑ δ(i)⇒ e∗ φ |= i
.= j

φ; Γ ` c ↓ δ(j)⇒ e∗
(elab-cons-wo-down)

S(c) = Πa1 : γ1 . . .Πan : γn.τ → δ(i)
φ; Γ ` e ↓ τ [a1, . . . , an 7→ i1, . . . in]⇒ e∗

φ ` i1 : γ1 · · · φ ` in : γn
φ; Γ ` c(e) ↑ δ(i[a1, . . . , an 7→ i1, . . . in])⇒ c[i1] . . . [in](e∗)

(elab-cons-w-up)

φ; Γ ` c(e) ↑ δ(i)⇒ e∗ φ |= i
.= j

φ; Γ ` c(e) ↓ δ(j)⇒ e∗
(elab-cons-w-down)

φ; Γ ` 〈〉 ↑ 1⇒ 〈〉 (elab-unit-up)

φ; Γ ` 〈〉 ↓ 1⇒ 〈〉 (elab-unit-down)

φ; Γ ` e1 ↑ τ1 ⇒ e∗1 φ; Γ ` e2 ↑ τ2 ⇒ e∗2
φ; Γ ` 〈e1, e2〉 ↑ τ1 ∗ τ2 ⇒ 〈e∗1, e∗2〉

(elab-prod-up)

φ; Γ ` e1 ↓ τ1 ⇒ e∗1 φ; Γ ` e2 ↓ τ2 ⇒ e∗2
φ; Γ ` 〈e1, e2〉 ↓ τ1 ∗ τ2 ⇒ 〈e∗1, e∗2〉

(elab-prod-down)

Figure 5.3: The elaboration rules for MLΠ,Σ
0 (C) (I)

5.2. ELABORATION 95

p ↓ τ1 ⇒ (p∗;φ′; Γ′) φ, φ′; Γ,Γ′ ` e ↓ τ2 ⇒ e∗ φ ` τ2 : ∗
φ; Γ ` (p⇒ e) ↓ (τ1 ⇒ τ2)⇒ (p∗ ⇒ e∗)

(elab-match)

φ; Γ ` (p⇒ e) ↓ (τ1 ⇒ τ2)⇒ (p∗ ⇒ e∗) φ; Γ ` ms ↓ (τ1 ⇒ τ2)⇒ ms∗

φ; Γ ` (p⇒ e | ms) ↓ (τ1 ⇒ τ2)⇒ (p∗ ⇒ e∗ | ms∗) (elab-matches)

φ; Γ ` e ↑ τ1 ⇒ e∗ φ; Γ ` ms ↓ (τ1 ⇒ τ2)⇒ ms∗

φ; Γ ` (case e of ms) ↓ τ2 ⇒ (case e∗ of ms∗)
(elab-case)

φ; Γ, x : τ1 ` e ↓ τ2 ⇒ e∗

φ; Γ ` (lam x.e) ↓ τ1 → τ2 ⇒ (lam x : τ1.e
∗
1)

(elab-lam)

φ;x : τ ` e ↓ τ2 ⇒ e∗ φ ` coerce(τ1, τ)⇒ E

φ; Γ ` (lam x : τ.e) ↓ τ1 → τ2 ⇒ (lam x1 : τ1.let x = E[x1] in e∗ end)
(elab-lam-anno)

φ; Γ ` e1 ↑ τ1 → τ2 ⇒ e∗1 φ; Γ ` e2 ↓ τ1 ⇒ e∗2
φ; Γ ` e1(e2) ↑ τ2 ⇒ e∗1(e∗2)

(elab-app-up)

φ; Γ ` e1(e2) ↑ τ1 ⇒ e∗ φ ` coerce(τ1, τ2)⇒ E

φ; Γ ` e1(e2) ↓ τ2 ⇒ E[e∗]
(elab-app-down)

φ; Γ ` e1 ↑ Σ(~a : ~γ).τ1 ⇒ e∗1 φ,~a : ~γ; Γ, x : τ1 ` e2 ↑ τ2 ⇒ e∗2
φ; Γ ` let x = e1 in e2 end ↑ Σ(~a : ~γ).τ2 ⇒ let 〈~a | x〉 = e∗1 in 〈~a | e∗2〉 end

(elab-let-up)

φ; Γ ` e1 ↑ Σ(~a : ~γ).τ1 ⇒ e∗1 φ,~a : ~γ; Γ, x : τ1 ` e2 ↓ τ2 ⇒ e∗2
φ; Γ ` let x = e1 in e2 end ↓ τ2 ⇒ let 〈~a | x〉 = e∗1 in e∗2 end

(elab-let-down)

φ; Γ, f : τ ` u ↓ τ ⇒ u∗

φ; Γ ` (fix f : τ.u) ↑ τ ⇒ (fix f : τ.u∗)
(elab-fix-up)

φ; Γ, f : τ ` u ↓ τ ⇒ u∗ φ ` coerce(τ, τ ′)⇒ E

φ; Γ ` (fix f : τ.u) ↓ τ ′ ⇒ let x = (fix f : τ.u∗) in E[x] end
(elab-fix-down)

φ; Γ ` e ↓ τ ⇒ e∗

φ; Γ ` (e : τ) ↑ τ ⇒ e∗
(elab-anno-up)

φ; Γ ` (e : τ) ↑ τ1 ⇒ e∗ φ ` coerce(τ1, τ2)⇒ E

φ; Γ ` (e : τ) ↓ τ2 ⇒ E[e∗]
(elab-anno-down)

Figure 5.4: The elaboration rules for MLΠ,Σ
0 (C) (II)

96 CHAPTER 5. EXISTENTIAL DEPENDENT TYPES

φ; Γ ` e1 ↑ τ1 → τ2 ⇒ e∗1 φ; Γ ` e2 ↓ τ1 ⇒ e∗2D =
φ; Γ ` e1(e2) ↑ τ2 ⇒ e∗1(e∗2) Then by induction hypothesis, both φ; Γ `

e∗1 : τ1 → τ2 and φ; Γ ` e∗2 : τ1 are derivable. This leads to the following.

φ; Γ ` e∗1 : τ1 → τ2 φ; Γ ` e∗2 : τ1

φ; Γ ` e∗1(e∗2) : τ2
(ty-app)

Note |e∗1(e∗2)| = |e∗1|(|e∗2|) ∼= |e1|(|e2|), and we are done.

φ; Γ ` e1(e2) ↑ τ1 ⇒ e∗ φ ` coerce(τ1, τ2)⇒ E
D =

φ; Γ ` e1(e2) ↓ τ2 ⇒ E[e∗] Then by induction hypothesis, φ; Γ ` e∗ :
τ1 is derivable and |e∗| ∼= |e1(e2)|. Since φ ` coerce(τ1, τ2) ⇒ E holds, φ; Γ ` E[e∗] : τ2 is
derivable by Theorem 5.2.4 and |e∗| ∼= |E[e∗]|. Hence, |e1(e2)| ∼= |E[e∗]| and we are done.

φ; Γ ` e1 ↑ Σ(~a : ~γ).τ1 ⇒ e∗1 φ,~a : ~γ; Γ, x : τ1 ` e2 ↑ τ2 ⇒ e∗2D =
φ; Γ ` let x = e1 in e2 end ↑ Σ(~a : ~γ).τ2 ⇒ let 〈~a | x〉 = e∗1 in 〈~a | e∗2〉 end By induction hy-

pothesis, both φ; Γ ` e∗1 : Σ(~a : ~γ).τ1 and φ,~a : ~γ; Γ, x : τ1 ` e∗2 : τ2 are derivable. Hence,
φ,~a : ~γ; Γ, x : τ1 ` e∗2 : Σ(~a : ~γ).τ2 is also derivable by applying the rule (trule-sig-intro)
repeatedly. Then by Proposition 5.2.2, the following is derivable.

φ; Γ ` let 〈~a | x〉 = e∗1 in e∗2 end : Σ(~a : ~γ).τ2

Note that we have the following.

|let 〈~a | x〉 = e∗1 in e∗2 end| = let x = |e∗1| in |e∗2| end ∼= let x = |e1| in |e2| end

Hence we are done.

φ; Γ ` e1 ↑ Σ(~a : ~γ).τ1 ⇒ e∗1 φ,~a : ~γ; Γ, x : τ1 ` e2 ↓ τ2 ⇒ e∗2D =
φ; Γ ` let x = e1 in e2 end ↓ τ2 ⇒ let 〈~a | x〉 = e∗1 in e∗2 end By induction hypothesis, both
φ; Γ ` e∗1 : Σ(~a : ~γ).τ1 and φ,~a : ~γ; Γ, x : τ1 ` e∗2 : τ2 are derivable. Therefore, the following is
derivable by Proposition 5.2.2.

φ; Γ ` let 〈~a | x〉 = e∗1 in e∗2 end : τ2

Note that we have the following.

|let 〈~a | x〉 = e∗1 in e∗2 end| = let x = |e∗1| in |e∗2| end ∼= let x = |e1| in |e2| end

Hence we are done.

φ; Γ, f : τ ` u ↓ τ ⇒ u∗
D =

φ; Γ ` (fix f : τ.u) ↑ τ ⇒ (fix f : τ.u∗) By induction hypothesis, φ; Γ, f : τ ` u∗ : τ is
derivable. This yields the following derivation.

φ; Γ, f : τ ` u∗ : τ
φ; Γ ` (fix f : τ.u∗) : τ

(ty-fix)

Also we have |fix f : τ.u∗| = fix f.|u∗| ∼= fix f.|u| = |fix f : τ.u|. This concludes the case.

All other cases can be handled similar.

5.2. ELABORATION 97

5.2.3 Elaboration as Constraint Generation

As usual, there is still a gap between the description of elaboration rules for MLΠ,Σ
0 (C) and an

actual implementation. In order to bridge the gap, we list the constraint generation rules in
Figure 5.5 and Figure 5.6.

The correctness of the constraint generation rules for MLΠ,Σ
0 (C) is justified by the following

theorem, which corresponds to Theorem 4.2.5.

Theorem 5.2.7 We have the following.

1. Suppose that Γ ` e ↑ τ ⇒[ψ] Φ is derivable. If φ[θ] |= Φ[θ] is provable for some θ such that
φ � θ : ψ is derivable, then there exists e∗ such that φ[θ]; Γ[θ] ` e ↑ τ [θ]⇒ e∗ is derivable.

2. Suppose that φ; Γ ` e ↓ τ ⇒[ψ] Φ is derivable. If φ[θ] |= Φ[θ] is provable for some θ such that
φ � θ : ψ is derivable, then there exists e∗ such that φ[θ]; Γ[θ] ` e ↓ τ [θ]⇒ e∗ is derivable.

Proof (1) and (2) are proven simultaneously by a structural induction on the derivations D of
Γ ` e ↑ τ ⇒[ψ] Φ and φ; Γ ` e ↓ τ ⇒[ψ] Φ. The proof is parallel to that of Theorem 4.2.5. We
present a few cases.

φ; Γ, x : τ1 ` e ↓ τ2 ⇒[ψ] Φ
D =

φ; Γ ` (lam x.e) ↓ τ1 → τ2 ⇒[ψ] Φ By induction hypothesis, φ[θ]; Γ[θ], x : τ1[θ] ` e ↓
τ [θ]⇒ e∗ is derivable, and this yields the following.

φ[θ]; Γ[θ], x : τ1[θ] ` e ↓ τ [θ]⇒ e∗

φ[θ]; Γ[θ] ` (lam x.e) ↓ τ1[θ]→ τ [θ]⇒ lam x : τ1[θ].e∗
(elab-lam)

Note that (τ1 → τ)[θ] is τ1[θ]→ τ [θ], and we are done.

φ; Γ ` e1(e2) ↑ τ1 ⇒[ψ1] Φ1 (φ | ψ2) ` τ2 : ∗
(φ | ψ2, ψ1) [̀·] coerce(τ1, τ2)⇒ Φ2D =
φ; Γ ` e1(e2) ↓ τ2 ⇒[ψ2] ∃(ψ1).Φ1 ∧ Φ2 Note that (∃ψ.Φ1 ∧ Φ2)[θ] is ∃ψ.Φ1[θ] ∧

Φ2[θ]. Hence, there is an existential substitution θ1 such that φ[θ] ` θ1 � ψ1 holds and
φ[θ2] |= Φ1[θ2] ∧ Φ2[θ2] is derivable for θ2 = θ, θ1. Hence, φ[θ2] |= Φ1[θ2] and φ[θ2] |= Φ2[θ2]
are derivable. By induction hypothesis, φ[θ2]; Γ[θ2] ` e1(e2) ↑ τ1[θ2] ⇒ e∗ is derivable. Also
φ[θ2] ` coerce(τ1[θ2], τ2[θ2]) ⇒ E is derivable for some E by Theorem 5.2.5. This leads to
the following.

φ[θ2]; Γ[θ2] ` e1(e2) ↑ τ1[θ2]⇒ e∗ φ[θ2] ` coerce(τ1[θ2], τ2[θ2])⇒ E

φ[θ2]; Γ[θ2] ` e1(e2) ↓ τ2[θ2]⇒ E[e∗]
(elrule-app-down)

Note that φ[θ] = φ[θ2], Γ[θ] = Γ[θ2] and τ2[θ] = τ2[θ2], and |e1(e2)| ∼= |e∗| ∼= |E[e∗]|. Hence,
we are done.

φ; Γ ` e1 ↑ Σ(~a : ~γ).τ1 ⇒[ψ] Φ1

φ,~aψ : γ; Γ, x : τ1[~a 7→ ~aψ] ` e2 ↑ τ2 ⇒[ψ] Φ2D =
φ; Γ ` (let x = e1 in e2 end) ↑ Σ(~aψ : ~γ).τ2 ⇒[ψ] Φ1 ∧ ∀(~aψ : ~γ).Φ2 Then by assumption,

the following is derivable.
φ[θ] |= (Φ1 ∧ ∀(~aψ).Φ2)[θ]

98 CHAPTER 5. EXISTENTIAL DEPENDENT TYPES

φ; Γ ` e ↑ τ ⇒[ψ] Φ (φ | ψ) ` γ : ∗s
φ; Γ ` e ↑ τ ⇒[ψ,A : γ] Φ

(constr-weak)

φ; Γ ` e ↑ Πa : γ.τ ⇒[ψ] Φ
φ; Γ ` e ↑ τ [a 7→ A]⇒[ψ,A : γ] Φ

(constr-pi-elim)

φ, aψ : γ; Γ ` e[a 7→ aψ] ↓ τ ⇒[ψ] Φ (φ | ψ) ` Γ[ctx]
φ; Γ ` λa : γ.e ↓ Πa : γ.τ ⇒[ψ] ∀(aψ : γ).Φ

(constr-pi-intro-1)

φ, aψ : γ; Γ ` e ↓ τ ⇒[ψ] Φ (φ | ψ) ` Γ[ctx]
φ; Γ ` e ↓ Πa : γ.τ ⇒[ψ] ∀(aψ : γ).Φ

(constr-pi-intro-2)

φ; Γ ` e ↓ τ [a 7→ A]⇒[ψ,A : γ] Φ
φ; Γ ` e ↓ Σa : γ.τ ⇒[ψ] ∃A : γ.Φ

(constr-sig-intro)

Γ(x) = τ (φ | ψ) ` Γ[ctx]
φ; Γ ` x ↑ τ ⇒[ψ] > (constr-var-up)

φ; Γ ` x ↑ τ1 ⇒[ψ2, ψ1] > (φ | ψ2) ` τ2 : ∗
(φ | ψ2) ` Γ[ctx] (φ | ψ2, ψ1) [̀·] coerce(τ1, τ2)⇒ Φ

φ; Γ ` x ↓ τ2 ⇒[ψ2] ∃(ψ1).Φ
(constr-var-down)

S(c) = Π(~a : ~γ).δ(i) φ ` Γ[ictx]

φ; Γ ` c ↑ δ(i[~a 7→ ~A])⇒[~A : ~γ] >
(constr-cons-wo-up)

φ; Γ ` c ↑ δ(i1)⇒[ψ2, ψ1] > (φ | ψ2) ` δ(i2) : ∗
φ; Γ ` c ↓ δ(i2)⇒[ψ2] ∃(ψ1).δ(i1) ≡ δ(i2)

(constr-cons-wo-down)

S(c) = Π(~a : ~γ).τ → δ(i) φ; Γ ` e ↓ τ [~a 7→ ~A]⇒[ψ, ~A : ~γ] Φ

φ; Γ ` c(e) ↑ δ(i[~a 7→ ~A])⇒[ψ, ~A : ~γ] Φ
(constr-cons-w-up)

φ; Γ ` c(e) ↑ δ(i1)⇒[ψ2, ψ1] Φ
(φ | ψ2) ` δ(i2) : ∗ (φ | ψ2) ` Γ[ctx]

φ; Γ ` c(e) ↓ δ(i2)⇒[ψ2] ∃(ψ1).Φ ∧ δ(i1) ≡ δ(i2)
(constr-cons-w-down)

(φ | ψ) ` Γ[ctx]
φ; Γ ` 〈〉 ↑ 1⇒[ψ] > (constr-unit-up)

(φ | ψ) ` Γ[ctx]
φ; Γ ` 〈〉 ↓ 1⇒[ψ] > (constr-unit-down)

φ; Γ ` e1 ↑ τ1 ⇒[ψ] Φ1 φ; Γ ` e2 ↑ τ2 ⇒[ψ] Φ2

φ; Γ ` 〈e1, e2〉 ↑ τ1 ∗ τ2 ⇒[ψ] Φ1 ∧ Φ2
(constr-prod-up)

φ; Γ ` e1 ↓ τ1 ⇒[ψ] Φ1 φ; Γ ` e2 ↓ τ2 ⇒[ψ] Φ2

φ; Γ ` 〈e1, e2〉 ↓ τ1 ∗ τ2 ⇒[ψ] Φ1 ∧ Φ2
(constr-prod-down)

Figure 5.5: The constraint generation rules for MLΠ,Σ
0 (C) (I)

5.2. ELABORATION 99

p ↓ τ1 ⇒ (p∗;φ1; Γ1) φ, φψ1 ; Γ,Γ1 ` e ↓ τ2 ⇒[ψ] Φ
(φ | ψ) ` τ1 ⇒ τ2 : ∗ (φ | ψ) ` Γ[ctx]

φ; Γ ` (p⇒ e) ↓ (τ1 ⇒ τ2)⇒[ψ] ∀(φψ1).Φ
(constr-match)

φ; Γ ` (p⇒ e) ↓ (τ1 ⇒ τ2)⇒[ψ] Φ1 φ; Γ ` ms ↓ (τ1 ⇒ τ2)⇒[ψ] Φ2

φ; Γ ` (p⇒ e | ms) ↓ (τ1 ⇒ τ2)⇒[ψ] Φ1 ∧ Φ2
(constr-matches)

φ; Γ ` e ↑ τ1 ⇒[ψ] Φ1 φ; Γ ` ms ↓ (τ1 ⇒ τ2)⇒[ψ] Φ2

φ; Γ ` (case e of ms) ↓ τ2 ⇒[ψ] Φ1 ∧ Φ2
(constr-case)

φ; Γ, x : τ1 ` e ↓ τ2 ⇒[ψ] Φ
φ; Γ ` (lam x.e) ↓ τ1 → τ2 ⇒[ψ] Φ

(constr-lam)

φ; Γ, x : τ ` e ↓ τ2 ⇒[ψ] Φ φ; Γ, x : τ1 ` x ↓ τ ⇒[ψ] Φ1

φ; Γ ` (lam x : τ.e) ↓ τ1 → τ2 ⇒[ψ] Φ ∧ Φ1
(constr-lam-anno)

φ; Γ ` e1 ↑ τ1 → τ2 ⇒[ψ] Φ1 φ; Γ ` e2 ↓ τ1 ⇒[ψ] Φ2

φ; Γ ` e1(e2) ↑ τ2 ⇒[ψ] Φ1 ∧ Φ2
(constr-app-up)

φ; Γ ` e1(e2) ↑ τ1 ⇒[ψ2, ψ1] Φ1 (φ | ψ2) ` τ2 : ∗
(φ | ψ2) ` Γ[ctx] (φ | ψ2, ψ1) [̀·] coerce(τ1, τ2)⇒ Φ2

φ; Γ ` e1(e2) ↓ τ2 ⇒[ψ2] ∃(ψ1).Φ1 ∧ Φ2
(constr-app-down)

φ; Γ ` e1 ↑ Σ(~a : ~γ).τ1 ⇒[ψ] Φ1

φ,~aψ : γ; Γ, x : τ1[~a 7→ ~aψ] ` e2 ↑ τ2 ⇒[ψ] Φ2

φ; Γ ` (let x = e1 in e2 end) ↑ Σ(~aψ : ~γ).τ2 ⇒[ψ] Φ1 ∧ ∀(~aψ : ~γ).Φ2

(constr-let-up)

φ; Γ ` e1 ↑ Σ(~a : ~γ).τ1 ⇒[ψ] Φ1

φ,~aψ : γ; Γ, x : τ1[~a 7→ ~aψ] ` e2 ↓ τ2 ⇒[ψ] Φ2

φ; Γ ` (let x = e1 in e2 end) ↓ τ2 ⇒[ψ] Φ1 ∧ ∀(~aψ : ~γ).Φ2

(constr-let-down)

φ; Γ, f : τ ` u ↓ τ ⇒[ψ] Φ
φ; Γ ` (fix f : τ.u) ↑ τ ⇒[ψ] Φ

(constr-fix-up)

φ; Γ, f : τ ` u ↓ τ ⇒[ψ] Φ φ; Γ, x : τ ` x ↓ τ1 ⇒[ψ] Φ1

φ; Γ ` (fix f : τ.u) ↓ τ1 ⇒[ψ] Φ ∧ Φ1
(constr-fix-down)

φ; Γ ` e ↓ τ ⇒[ψ] Φ
φ; Γ ` (e : τ) ↑ τ ⇒[ψ] Φ

(constr-anno-up)

φ; Γ ` (e : τ) ↑ τ1 ⇒[ψ] > (φ | ψ) ` τ2 : ∗
(φ | ψ) [̀·] coerce(τ1, τ2)⇒ Φ

φ; Γ ` (e : τ) ↓ τ2 ⇒[ψ] Φ
(constr-anno-down)

Figure 5.6: The constraint generation rules for MLΠ,Σ
0 (C) (II)

100 CHAPTER 5. EXISTENTIAL DEPENDENT TYPES

This implies that both φ[θ] ` Φ1[θ] and φ[θ] ` ∀(~aψ : ~γ[θ]).Φ2[θ] are derivable. By induc-
tion hypothesis, the following is derivable for some e∗1 such that |e1| ∼= |e∗1|, where ~γ[θ] is
γ1[θ], . . . , γn[θ] for ~γ = γ1, . . . , γn.

φ[θ]; Γ[θ] ` e1 ↑ Σ(~aψ : ~γ[θ]).τ1[θ]⇒ e∗1

Notice that the derivability of φ[θ] ` ∀(~aψ : ~γ[θ]).Φ2[θ] implies that of φ[θ],~aψ : ~γ[θ] |= Φ2[θ].
By induction hypothesis, we have the following derivable for some e∗2 such that |e2| ∼= |e∗2|.

φ[θ],~aψ[θ] : γ[θ]; Γ[θ], x : τ1[~a 7→ ~aψ][θ] ` e2 ↑ τ2[θ]⇒ e∗2

This yields the following derivation.

φ[θ]; Γ[θ] ` e1 ↑ Σ(~a : ~γ[θ]).τ1[θ]⇒ e∗1
φ[θ],~aψ : ~γ[θ]; Γ, x : τ1[~a 7→ ~aψ][θ] ` e2 ↑ τ2[θ]⇒ e∗2

φ[θ]; Γ[θ] ` let x = e1 in e2 end ↑ Σ(~aψ : ~γ[θ]).τ2[θ]⇒ let 〈~a | x〉 = e∗1 in 〈~a | e∗2〉 end

So the case wraps up.

φ; Γ, f : τ ` u ↓ τ ⇒[ψ] Φ
D =

φ; Γ ` (fix f : τ.u) ↑ τ ⇒[ψ] Φ By induction hypothesis, φ[θ]; Γ[θ], f : τ [θ] ` u ↓ τ [θ] ⇒
u∗ is derivable for some u∗ such that |u| ∼= |u∗|, and this leads to the following.

φ[θ]; Γ[θ], f : τ [θ] ` u ↓ τ [θ]⇒ u∗

φ[θ]; Γ[θ] ` (fix f : τ.u) ↓ τ [θ]⇒ (fix f : τ [θ].u∗)
(elab-fix)

Note that |fix f : τ.u| = fix f.|u| ∼= fix f.|u∗| = |fix f : τ [θ].u∗|, and we are done.

All other cases can be treated in a similar manner.

Given a program, that is, a closed expression e in DML(C), we can use the constraint generation
rules to derive a judgement of form ·; · ` e ↑ τ ⇒[ψ] Φ for some ψ, τ and Φ. Assume that this
process succeeds. By Theorem 5.2.7 and Theorem 5.2.6, we know that e can be elaborated into an
expression e∗ in MLΠ,Σ

0 (C) such that |e| ∼= |e∗| if · |= ∃(ψ).Φ can be derived. In this sense, we say
that type-checking in MLΠ,Σ

0 (C) has been reduced to constraint satisfaction.

5.3 Summary

In this section, MLΠ
0 (C) is extended with existential dependent types, leading to the language

MLΠ,Σ
0 (C). This extension seems to be indispensable in practical programming. For instance,

existential dependent types are used in all the examples presented in Appendix A. Like MLΠ
0 (C),

MLΠ,Σ
0 (C) enjoys the type preservation property and its operational semantics can be simulated

by that of ML0 (Theorem 5.1.3 and Theorem 5.1.5). Consequently, MLΠ,Σ
0 (C) is a conservative

extension of ML0.
MLΠ,Σ

0 (C) is an explicitly typed internal programming language, and therefore, a practical
elaboration from the external language DML(C) to MLΠ,Σ

0 (C) is crucial if MLΠ,Σ
0 (C) is intended

for general purpose programming. As for MLΠ
0 (C), we achieve this by presenting a set of elaboration

5.3. SUMMARY 101

rules and then a set of constraint generation rules. The correctness of these rules is justified by
Theorem 5.2.6 and Theorem 5.2.7, respectively.

However, there is a significant issue which involves whether a variant of A-normal transform
should be performed on programs in MLΠ,Σ

0 (C) before elaboration. This transform enables us
to elaborate a very common form of expressions which could otherwise not be elaborated, but it
also prevents us from elaborating a less common form of expressions. A serious disadvantage of
performing the transform is that it can complicate reporting comprehensible error messages during
elaboration since the programmer may have to understand how the programs are transformed. An
alternative is to allow the programmer to control the transform with the help of some sugared
syntax. This has yet to be settled in practice. We point out that the transform is performed in
our current prototype implementation.

This chapter has further solidified the justification for the practicality of our approach to
extending programming languages with dependent types. The theoretic core of this thesis consists
of Chapter 4 and Chapter 5. We are now ready to study the issues on extending MLΠ,Σ

0 (C) with
let-polymorphism, effects such as references and exceptions, aiming for adding dependent types to
the entire core of ML.

102 CHAPTER 5. EXISTENTIAL DEPENDENT TYPES

Chapter 6

Polymorphism

Polymorphism is the ability to abstract expressions over types. Such expressions with universally
quantified types can then assume different types when the universally quantified type variables are
instantiated differently. Therefore, polymorphism provides an approach to promoting certain form
of code reuse, which is an important issue in software engineering. In this chapter, we extend the
language ML0 to ML∀0 with ML-style of let-polymorphism and prove some relevant results. We then
extend the language MLΠ,Σ

0 (C) to ML∀,Π,Σ0 (C), combining dependent types with let-polymorphism.
The relation between ML∀,Π,Σ0 (C) and ML∀0 is established, parallel to that between MLΠ,Σ

0 (C) and
ML0.

Although the development of dependent types is largely orthogonal to polymorphism, it is
nonetheless noticeably involved to combine these two features together. Also there are some prac-
tical issues showing up when elaboration is concerned, which must be addressed carefully.

6.1 Extending ML0 to ML∀0

In this section, we extend ML0 with ML-style of let-polymorphism, yielding a polymorphic pro-
gramming language ML∀0 . The syntax of ML∀0 enriches that of ML0 with the following.

type variables α
type constructors δ
types τ ::= · · · | α | (τ1, . . . , τn)δ
type schemes σ ::= τ | ∀α.σ
patterns p ::= · · · | c(~α) | c(~α)(p)
expressions e ::= · · · | c(~τ) | c(~τ)(e) | x(~τ) | Λα.e
value forms u ::= · · · | c(~τ) | c(~τ)(u)
values v ::= · · · | x(~τ) | c(~τ) | c(~τ)(v) | Λα.v
type var contexts ∆ ::= · | ∆, α
signature S ::= · · · | S, δ : ∗ → · · · → ∗ | c : ∀~α.(~α)δ
substitutions θ ::= · · · | θ[α 7→ τ]

We use ~τ for a (possibly empty) sequence of types τ1, . . . , τm. In addition, given ~τ = τ1, . . . , τm,
(~τ)δ, c(~τ) and x(~τ) are abbreviations for (τ1, . . . , τm)δ, c(τ1) . . . (τm) and x(τ1) . . . (τm), respectively.
We may also write ∀~α.σ for ∀α1 . . .∀αn.σ, where ~α = α1, . . . , αn.

103

104 CHAPTER 6. POLYMORPHISM

α ∈ ∆
∆ ` α : ∗ (type-var)

∆ ` β : ∗ (type-base)

S(δ) = ∗ → · · · → ∗ → ∗ ∆ ` τ1 : ∗ · · · ∆ ` τm : ∗
∆ ` (τ1, . . . , τm)δ : ∗ (type-datatype)

∆ ` 1 : ∗ (type-unit)
∆ ` τ1 : ∗ ∆ ` τ2 : ∗

∆ ` τ1 ∗ τ2 : ∗ (type-prod)

∆ ` τ1 : ∗ ∆ ` τ2 : ∗
∆ ` τ1 → τ2 : ∗ (type-fun)

∆, α ` σ
∆ ` ∀α.σ (type-poly)

Figure 6.1: Type formation rules for ML∀0

The types in ML∀0 are basically those defined in ML0 but they may contain type variables in
this setting. A type scheme σ must be of the form ∀α1 · · · ∀αn.τ and σ is τ if n = 0.

Notice that the treatment of patterns is non-standard. In ML, the type variables do not occur
in patterns. We take this approach since it naturally follows the one we adopted for handling
universal dependent types in Section 4.1. However, the difference is largely cosmetic.

6.1.1 Static Semantics

The rules for forming legal types in ML∀0 are presented in Figure 6.1. Clearly, if ∆ ` σ : ∗ is
derivable, then all free type variables in σ are declared in ∆.

We present the typing rules for pattern matching in Figure 6.2. We then list all the type
inference rules for ML∀0 in Figure 6.3. Of course, we require that there be no free occurrences of
α in Γ(x) for every x ∈ dom(Γ) when the rule (ty-poly-intro) is introduced. The rules closely
resemble those for ML0 except that we now use a type variable context ∆ in every judgement
to keep track of free type variables. The let-polymorphism is enforced because (ty-let) is the
only rule which can eliminate from (ordinary) variable context the variables whose types contain
∀ quantifiers.

Given a substitution θ, we define

x(~τ)[θ] = v[~α 7→ ~τ]

if θ(x) = Λ~α.v. Notice that ~α and ~τ must have the same length. Otherwise, x(~τ)[θ] is unde-
fined. This definition obviates the need for introducing expressions of form e(~τ) for non-variable
expressions e, which cannot occur in ML∀0 since only let-polymorphism is allowed.

Lemma 6.1.1 If ∆ ` τi : ∗ are derivable for i = 1, . . . , n and ∆, ~α; Γ ` e : σ is also derivable
in ML∀0, then ∆; Γ[~α 7→ ~τ] ` e[~α 7→ ~τ] : σ[~α 7→ ~τ] is derivable, where ~α = α1, . . . , αn and
~τ = τ1, . . . , τn.

Proof This simply follows from a structural induction on the derivation of ∆, ~α; Γ ` e : σ.

6.1. EXTENDING ML0 TO ML∀0 105

x ↓ τ � (x : τ)
(pat-var)

〈〉 ↓ 1 � · (pat-unit)

p1 ↓ τ1 � Γ1 p2 ↓ τ2 � Γ2

〈p1, p2〉 ↓ τ1 ∗ τ2 � Γ1,Γ2
(pat-prod)

S(c) = ∀α1 . . .∀αm.(α1, . . . , αm)δ
c(α1) . . . (αm) ↓ (τ1, . . . , τm)δ � · (pat-cons-wo)

S(c) = ∀α1 . . . ∀αm.(τ → (α1, . . . , αm)δ)
p ↓ τ [α1, . . . , αm 7→ τ1, . . . , τm] � Γ

c(α1) . . . (αm)(p) ↓ (τ1, . . . , τm)δ � Γ
(pat-cons-w)

Figure 6.2: Typing rules for pattern matching in ML∀0

Lemma 6.1.2 If both ∆; Γ ` v : σ1 and ∆; Γ, x : σ1 ` e : σ are derivable, then ∆; Γ ` e[x 7→ v] : σ
is also derivable.

Proof This simply follows from a structural induction on the derivation of ∆; Γ, x : σ1 ` e : σ.

6.1.2 Dynamic Semantics

The evaluation rules for formulating the natural semantics of ML∀0 are those for ML0 plus the
following rule (ev-poly), which is needed for evaluation under Λ.

e ↪→0 v
Λα.e ↪→0 Λα.v

(ev-poly)

Note that we do not need a rule for evaluating e(τ) because this expression can never occur in
ML∀0 .

As usual, the type preservation theorem holds in ML∀0 .

Theorem 6.1.3 (Type preservation for ML∀0) If e ↪→0 v and ∆; Γ ` e : σ are derivable, then
∆; Γ ` v : σ is also derivable.

Proof This proof proceeds by a structural induction on the derivation D of e ↪→0 v, parallel to
that of Theorem 2.2.7. We present several cases.

e1 ↪→0 v1 e2[x 7→ v1] ↪→0 v
D =

(let x = e1 in e2 end) ↪→0 v Then we also have the following derivation.

∆; Γ ` e1 : σ1 ∆; Γ, x1 : σ1 ` e2 : τ
∆; Γ ` let x1 = e1 in e2 end : τ

(ty-let)

106 CHAPTER 6. POLYMORPHISM

∆ ` τ1 : ∗ · · · ∆ ` τn : ∗ Γ(x) = ∀α1 · · · ∀αn.τ
∆; Γ ` x(τ1) . . . (τn) : τ [α1, . . . , αn 7→ τ1, . . . , τn]

(ty-poly-var)

S(c) = ∀α1 · · · ∀αn.(α1, . . . , αn)δ ∆ ` τ1 : ∗ · · · ∆ ` τn : ∗
∆; Γ ` c(τ1, . . . , τn) : (τ1, . . . , τn)δ

(ty-poly-cons-wo)

S(c) = ∀α1 · · · ∀αn.τ → δ
∆ ` τ1 : ∗ · · · ∆ ` τn : ∗ ∆; Γ ` e : τ [α1, . . . , αn 7→ τ1, . . . , τn]

∆; Γ ` c(τ1, . . . , τn)(e) : (τ1, . . . , τn)δ
(ty-poly-cons-w)

∆; Γ ` 〈〉 : 1
(ty-unit)

∆; Γ ` e1 : τ1 ∆; Γ ` e2 : τ2

∆; Γ ` 〈e1, e2〉 : τ1 ∗ τ2
(ty-prod)

∆ ` τ1 : ∗ p ↓ τ1 � Γ′ ∆; Γ,Γ′ ` e : τ2

∆; Γ ` p⇒ e : τ1 ⇒ τ2
(ty-match)

∆; Γ ` (p⇒ e) : τ1 ⇒ τ2 ∆; Γ ` ms : τ1 ⇒ τ2

∆; Γ ` (p⇒ e | ms) : τ1 ⇒ τ2
(ty-matches)

∆; Γ ` e : τ1 ∆; Γ ` ms : τ1 ⇒ τ2

∆; Γ ` (case e of ms) : τ2
(ty-case)

∆; Γ, x : τ1 ` e : τ2

∆; Γ ` (lam x : τ1.e) : τ1 → τ2
(ty-lam)

∆; Γ ` e1 : τ1 → τ2 ∆; Γ ` e2 : τ1

∆; Γ ` e1(e2) : τ2
(ty-app)

∆; Γ ` e1 : σ ∆; Γ, x : σ ` e2 : τ
∆; Γ ` let x = e1 in e2 end : τ

(ty-let)

∆; Γ, f : τ ` u : τ
∆; Γ ` (fix f : τ.u) : τ

(ty-fix)

∆, α; Γ ` e : σ
∆; Γ ` Λα.e : ∀α.σ (ty-poly-intro)

Figure 6.3: Typing Rules for ML∀0

6.2. EXTENDING MLΠ,Σ
0 (C) TO ML∀,Π,Σ0 (C) 107

By induction hypothesis, ∆; Γ ` v1 : σ1 is derivable. Therefore, ∆; Γ ` e2[x1 7→ v1] : τ is
derivable by Lemma 6.1.2. This leads to a derivation of ∆; Γ ` v : σ1 by induction hypothesis.

e1 ↪→0 v1
D =

Λα.e1 ↪→0 Λα.v1 Then we also have the following derivation.

∆, α; Γ ` e1 : σ1

∆; Γ ` Λα.e1 : ∀α.σ1
(ty-poly-intro)

By induction hypothesis, ·; ∆, α; Γ ` v1 : σ1 is derivable. This readily leads to a derivation of
∆; Γ ` Λα.v1 : ∀α.σ1.

As in ML0, types play no rôle in program evaluation. Extending the definition of the type
erasure function | · | as follows, we capture the indifference of types to evaluation in ML∀0 through
Theorem 6.1.4.

|x(~τ)| = x |c(~α)| = c |c(~α)(e)| = c(|e|) |Λα.e| = |e|

Theorem 6.1.4 Given an expression e in ML∀0, we have the following.

1. If e ↪→0 v is derivable in ML∀0, then |e| ↪→0 |v| is derivable in λpat
val .

2. If ∆; Γ ` e : σ is derivable in ML∀0 and |e| ↪→0 v0 derivable in λpat
val , then e ↪→0 v is derivable

in ML∀0 for some v such that |v| = v0.

Proof (1) and (2) follow from a structural induction on the derivations of e ↪→0 v and |e| ↪→0 v0,
respectively.

We have now finished setting up the machinery for combining dependent types with the ML
style of let-polymorphism.

6.2 Extending MLΠ,Σ
0 (C) to ML∀,Π,Σ0 (C)

The language MLΠ,Σ
0 (C) is extended to the language ML∀,Π,Σ0 (C) as follows. We use~i for a (possibly

empty) sequence of type indices. In addition, given ~τ = τ1, . . . , τm and ~i = i1, . . . , in, c(~α)[~i] is an
abbreviation for c(τ1) . . . (τm)[i1] . . . [in].

type variables α
types τ ::= · · · | α
type schemes σ ::= τ | ∀α.σ
patterns p ::= · · · | c(~α)[~i] | c(~α)[~i](p)
expressions e ::= · · · | c(~τ)[~i] | c(~τ)[~i](e) | x(~τ) | Λα.e
value forms u ::= · · · | c(~τ)[~i] | c(~τ)[~i](u)
values v ::= · · · | x(~τ) | c(~τ)[~i] | c(~τ)[~i](v) | Λα.v
signature S ::= · · · | S, δ : ∗ → · · · → ∗ → γ → ∗ | S, c : ∀~α.∀~a : ~γ.(~α)δ(i)
substitutions θ ::= · · · | θ[α 7→ τ]

108 CHAPTER 6. POLYMORPHISM

α ∈ ∆ ` φ[ictx]
φ; ∆ ` α : ∗ (type-var)

` φ[ictx]
φ; ∆ ` 1 : ∗ (type-unit)

S(δ) = ∗ → · · · → ∗ → γ → ∗ φ; ∆ ` τ1 : ∗ · · · φ; ∆ ` τm : ∗ φ ` i : γ
φ; ∆ ` (τ1, . . . , τm)δ(i) : ∗ (type-datatype)

φ; ∆ ` τ1 : ∗ φ; ∆ ` τ2 : ∗
φ; ∆ ` τ1 ∗ τ2 : ∗ (type-prod)

φ; ∆ ` τ1 : ∗ φ; ∆ ` τ2 : ∗
φ; ∆ ` τ1 → τ2 : ∗ (type-fun)

φ, a : γ; ∆ ` τ : ∗
φ; ∆ ` Πa : γ.τ : ∗ (type-pi)

φ, a : γ; ∆ ` τ : ∗
φ; ∆ ` Σa : γ.τ : ∗ (type-sig)

·; ∆, α ` σ : ∗
·; ∆ ` ∀α.σ : ∗ (type-poly)

Figure 6.4: Type formation rules for ML∀,Π,Σ0 (C)

The types in ML∀,Π,Σ0 (C) are basically the types defined in MLΠ,Σ
0 (C) but they may contain

type variables in this setting. A type scheme σ must then be of the form ∀α1 · · · ∀αn.τ and σ is τ
if n = 0. Notice that this disallows ∀ quantifiers to occur in the scope of a Π or Σ quantifier. For
instance, the following is an illegal type.

Πn : nat.∀α.(α)list(n)→ (α)list(n)

This restriction is also necessary for the two-phase type-checking algorithm we introduce shortly.

6.2.1 Static Semantics

We present the rules for forming legal types in Figure 6.4.
Also we need the following additional rules for handling the type congruence relation.

φ |= α ≡ α
φ |= τ1 ≡ τ ′1 · · · φ |= τn ≡ τ ′n φ |= i

.= i′

φ |= (τ1, . . . , τn)δ(i) ≡ (τ ′1, . . . , τ
′
n)δ(i′)

We present the typing rules for pattern matching in Figure 6.5. Notice that in the rule
(pat-cons-w), the type of a constructor c associated with a datatype constructor δ is always
of form

∀α1 . . . ∀αm.Πa1 : γ1 . . .Πan : γn.(τ → (α1, . . . , αm)δ(i))

For instance, it is not allowed in SML to declare a datatype as follows.

datatype bottom = Bottom of ’a

because this declaration assigns Bottom the type ∀α.α → bottom, which clearly is not of the
required form ∀α.τ → (α)bottom.

The following proposition is parallel to Proposition 4.1.8 for MLΠ
0 (C).

Proposition 6.2.1 We have the following.

6.2. EXTENDING MLΠ,Σ
0 (C) TO ML∀,Π,Σ0 (C) 109

x ↓ τ � (·;x : τ)
(pat-var)

〈〉 ↓ 1 � (·; ·) (pat-unit)

p1 ↓ τ1 � (φ1; Γ1) p2 ↓ τ2 � (φ2; Γ2)
〈p1, p2〉 ↓ τ1 ∗ τ2 � (φ1, φ2; Γ1,Γ2)

(pat-prod)

S(c) = ∀α1 . . .∀αm.Πa1 : γ1 . . .Πan : γn.(α1, . . . , αm)δ(i)
c(α1) . . . (αm)[a1] . . . [an] ↓ (τ1, . . . , τm)δ(j) � (a1 : γ1, . . . , an : γ; ·) (pat-cons-wo)

S(c) = ∀α1 . . . ∀αm.Πa1 : γ1 . . .Πan : γn.(τ → (α1, . . . , αm)δ(i))
p ↓ τ [α1, . . . , αm 7→ τ1, . . . , τm] � (φ; Γ)

c(α1) . . . (αm)[a1] . . . [an](p) ↓ (τ1, . . . , τm)δ(j) � (a1 : γ1, . . . , an : γn, i
.= j, φ; Γ)

(pat-cons-w)

Figure 6.5: Typing rules for patterns

1. ‖τ [θ]‖ = ‖τ‖ and ‖e[θ]‖ = ‖e‖[‖θ‖].

2. ‖u‖ is a value form in ML∀0 if u is a value form in ML∀,Π,Σ0 (C).

3. ‖v‖ is a value in ML∀0 if v is a value in ML∀,Π,Σ0 (C).

4. If p ↓ τ � (φ′; Γ′) is derivable. then ‖p‖ ↓ ‖τ‖� ‖Γ′‖ is derivable.

5. If match(p, v) =⇒ θ is derivable in ML∀,Π,Σ0 (C), then match(‖p‖, ‖v‖) =⇒ ‖θ‖ is derivable
in ML∀0.

6. Given v, p in ML∀,Π,Σ0 (C) such that φ; Γ ` v : τ and p ↓ τ =⇒ (φ′; Γ′) are derivable. If
match(‖p‖, ‖v‖) =⇒ θ0 is derivable, then match(p, v) =⇒ θ is derivable for some θ and
‖θ‖ = θ0.

7. If φ ` τ1 ≡ τ2 is derivable, then ‖τ1‖ = ‖τ2‖.

Proof Please refer to the proof of Proposition 4.1.8.

We list all the type inference rules for ML∀,Π,Σ0 (C) in Figure 6.6. The rules resemble those
for MLΠ,Σ

0 (C) very closely except that we now use a type variable context ∆ in a judgement to
keep track of free type variables. The let-polymorphism is enforced because (ty-let) is the only
rule which can eliminate from (ordinary) variable context a variable whose type begins with a ∀
quantifier.

Example 6.2.2 We present an example of type derivation in ML∀,Π,Σ0 (C). Let D1 be the following
derivation,

·;α;x : α ` x : α
(ty-poly-var)

·;α; · ` λx : α.x : α→ α
(ty-lam)

·; ·; · ` (Λα.λx : α.x) : ∀α.α→ α
(ty-poly-intro)

110 CHAPTER 6. POLYMORPHISM

φ; ∆; Γ ` e : τ1 φ ` τ1 ≡ τ2

φ; ∆; Γ ` e : τ2
(ty-eq)

φ; ∆ ` τ1 : ∗ · · · φ; ∆ ` τn : ∗ Γ(x) = ∀α1 · · · ∀αn.τ
φ; ∆; Γ ` x(τ1) . . . (τn) : τ [α1, . . . , αn 7→ τ1, . . . , τn]

(ty-poly-var)

φ; ∆ ` τ1 : ∗ · · · φ; ∆ ` τn : ∗ S(c) = ∀α1 · · · ∀αn.τ
φ; ∆; Γ ` c(τ1) · · · (τn) : τ [α1, . . . , αn 7→ τ1, . . . , τn]

(ty-poly-cons)

φ; ∆; Γ ` 〈〉 : 1
(ty-unit)

φ; ∆; Γ ` e1 : τ1 φ; ∆; Γ ` e2 : τ2

φ; ∆; Γ ` 〈e1, e2〉 : τ1 ∗ τ2
(ty-prod)

p ↓ τ1 � (φ′; Γ′) φ, φ′; Γ,Γ′ ` e : τ2

φ; ∆; Γ ` p⇒ e : τ1 ⇒ τ2
(ty-match)

φ; ∆; Γ ` (p⇒ e) : τ1 ⇒ τ2 φ; ∆; Γ ` ms : τ1 ⇒ τ2

φ; ∆; Γ ` (p⇒ e | ms) : τ1 ⇒ τ2
(ty-matches)

φ; ∆; Γ ` e : τ1 φ; ∆; Γ ` ms : τ1 ⇒ τ2

φ; ∆; Γ ` (case e of ms) : τ2
(ty-case)

φ, a : γ; ∆; Γ ` e : τ
φ; ∆; Γ ` (λa : γ.e) : (Πa : γ.τ)

(ty-ilam)

φ; ∆; Γ ` e : Πa : γ.τ φ ` i : γ
φ; ∆; Γ ` e[i] : τ [a 7→ i]

(ty-iapp)

φ; ∆; Γ ` e : τ [a 7→ i] φ ` i : γ
φ; ∆; Γ ` 〈i | e〉 : (Σa : γ.τ)

(ty-sig-intro)

φ; ∆; Γ ` e1 : Σa : γ.τ1 φ, a : γ; Γ, x : τ1 ` e2 : τ2

φ; ∆; Γ ` let 〈a | x〉 = e1 in e2 end : τ2
(ty-sig-elim)

φ; ∆; Γ, x : τ1 ` e : τ2

φ; ∆; Γ ` (lam x : τ1.e) : τ1 → τ2
(ty-lam)

φ; ∆; Γ ` e1 : τ1 → τ2 φ; ∆; Γ ` e2 : τ1

φ; ∆; Γ ` e1(e2) : τ2
(ty-app)

φ; ∆; Γ ` e1 : σ φ, φ1; ∆; Γ, x : σ ` e2 : τ
φ, φ1; ∆; Γ ` let x = e1 in e2 end : τ

(ty-let)

φ; ∆; Γ, f : τ ` u : τ
φ; ∆; Γ ` (fix f : τ.u) : τ

(ty-fix)

·; ∆, α; Γ ` e : σ
·; ∆; Γ ` Λα.e : ∀α.σ (ty-poly-intro)

Figure 6.6: Typing Rules for ML∀,Π,Σ0 (C)

6.2. EXTENDING MLΠ,Σ
0 (C) TO ML∀,Π,Σ0 (C) 111

and D2 be the following one,

·; ·; f : ∀α.α→ α ` 0 : int
·; · ` int : ∗

·; ·; f : ∀α.α→ α ` f(int) : int→ int
(ty-poly-var)

·; ·; f : ∀α.α→ α ` f(int)(0) : int
(ty-app)

and D3 be the following one.

·; ·; f : ∀α.α→ α ` false : bool
·; · ` bool : ∗

·; ·; f : ∀α.α→ α ` f(bool) : bool→ bool
(ty-poly-var)

·; ·; f : ∀α.α→ α ` f(bool)(false) : bool
(ty-app)

Then we have the following derivation.

D1

D2 D3

·; ·; f : ∀α.α→ α ` 〈f(int)(0), f(bool)(false)〉 : int ∗ bool
(ty-prod)

·; ·; · ` let f = Λα.λx : α.x in 〈f(int)(0), f(bool)(false)〉 end : int ∗ bool
(ty-let)

Lemma 6.2.3 If φ; ∆ ` τi : ∗ are derivable for 1 = 1, . . . , n and φ; ∆, ~α; Γ ` e : σ is also derivable,
then φ; ∆; Γ[~α 7→ ~τ] ` e[~α 7→ ~τ] : σ[~α 7→ ~τ] is derivable, where ~α = α1, . . . , αn and ~τ = τ1, . . . , τn.

Proof This simply follows from a structural induction on the derivation of φ; ∆, ~α; Γ ` e : σ.

Lemma 6.2.4 If both φ; ∆; Γ ` v : σ1 and φ, φ1; ∆; Γ, x : σ1 ` e : σ are derivable, then φ, φ1; ∆; Γ `
e[x 7→ v] : σ is also derivable.

Proof The proof follows from a structural induction on the derivation D of φ, φ1; ∆; Γ, x : σ1 `
e : σ. We present one case as follows.

φ, φ1; ∆ ` τ1 : ∗ · · · φ, φ1; ∆ ` τn : ∗
D =

φ, φ1; ∆; Γ, x : ∀~α.τ ` x(~τ) : τ [~α 7→ ~τ] Since φ; ∆; Γ ` v : ∀~α.τ is derivable, v is of form
Λ~α.v1 and φ; ∆, ~α; Γ ` v : τ is also derivable by inverting the rule (ty-poly-intro). We
require that ~α have no free occurrences in the types of the variables declared in Γ. This
implies that φ, φ1; ∆, ~α; Γ ` v : τ is also derivable.

Notice x(~τ)[x := Λ~α.v1] = v1[~α 7→ ~τ]. By Lemma 6.2.3, φ, φ1; ∆; Γ ` v[~α 7→ ~τ] : τ [~α 7→ ~τ] is
derivable since Γ = Γ[~α 7→ ~τ].

All other cases can be treated similarly.

6.2.2 Dynamic Semantics

In addition to the evaluation rules for MLΠ,Σ
0 (C), we also need the following rule to formulate the

natural semantics of ML∀,Π,Σ0 (C).

e ↪→d v
Λα.e ↪→d Λα.v

(ev-poly)

112 CHAPTER 6. POLYMORPHISM

Theorem 6.2.5 (Type preservation for ML∀,Π,Σ0 (C)) If both e ↪→d v and φ; ∆; Γ ` e : σ are
derivable, then φ; ∆; Γ ` v : σ is also derivable.

Proof The proof, parallel to that of Theorem 5.1.1, is based on a structural induction on the
derivation D of e ↪→d v and the derivation of φ; ∆; Γ ` e : σ, lexicographically ordered. We present
a few interesting cases as follows.

e1 ↪→d v1 e2[x 7→ v1] ↪→d v
D =

(let x = e1 in e2 end) ↪→d v Then we also have the following derivation.

φ; ∆; Γ ` e1 : σ1 φ, φ1; ∆; Γ, x1 : σ1 ` e2 : τ
φ, φ1; ∆; Γ ` let x1 = e1 in e2 end : τ

(ty-let)

By induction hypothesis, φ; ∆; Γ ` v1 : σ1 is derivable. Therefore, φ, φ1; ∆; Γ ` e2[x1 7→ v1] : τ
by Lemma 6.2.4. This leads to a derivation of φ, φ1; ∆; Γ ` v : τ .

e1 ↪→d v1
D =

Λα.e1 ↪→d Λα.v1 Then we also have the following derivation.

·; ∆, α; Γ ` e1 : σ1

·; ∆; Γ ` Λα.e1 : ∀α.σ1
(ty-poly-intro)

By induction hypothesis, ·; ∆, α; Γ ` v1 : σ1 is derivable. This readily leads to a derivation of
·; ∆; Γ ` Λα.v1 : ∀α.σ1

The rest of the cases can be treated similarly.

Clearly, the definition of the index erasure function ‖ · ‖ can be extended as follows.

‖α‖ = α
‖∀α.σ‖ = ∀α.‖σ‖
‖Λα.e‖ = Λα.‖e‖
‖x(~τ)‖ = x(‖~τ‖)
‖c(~τ)[~i]‖ = c(‖~τ‖)
‖c(~τ)[~i](e)‖ = c(‖~τ‖)(‖e‖)

Now an immediate question is whether we still have the corresponding versions of Theorem 5.1.2,
Theorem 5.1.3 and Theorem 5.1.5 in ML∀,Π,Σ0 (C). Unsurprisingly, the answer is positive.

The relation between ML∀,Π,Σ0 (C) and ML∀0 is similar to that between MLΠ,Σ
0 (C) and ML0.

The following theorem corresponds to Theorem 5.1.2. Therefore, if an (untyped) expression in λpat
val

is typable in ML∀,Π,Σ0 (C), it is already typable in ML∀0 . This reiterates that the objective of our
work is to assign programs more accurate types rather than make more programs typable.

Theorem 6.2.6 If φ; ∆; Γ ` e : σ is derivable in ML∀,Π,Σ0 (C), then ∆; ‖Γ‖ ` ‖e‖ : ‖σ‖ is derivable
in ML∀0.

Proof The proof follows from a structural induction on the derivation of φ; ∆; Γ ` e : σ

6.2. EXTENDING MLΠ,Σ
0 (C) TO ML∀,Π,Σ0 (C) 113

Theorem 6.2.7 If e ↪→d v is derivable in ML∀,Π,Σ0 (C), then ‖e‖ ↪→0 ‖v0‖ is derivable in ML∀0.

Proof This follows a structural induction on the derivation D of e ↪→d v. We present a few
interesting cases.

e1 ↪→d v1 e2[x 7→ v1] ↪→d v
D =

(let x = e1 in e2 end) ↪→d v By induction hypothesis, ‖e1‖ ↪→0 ‖v1‖ and ‖e2[x 7→
v1]‖ ↪→0 ‖v‖ are derivable. It can be readily verified that ‖e2[x 7→ v1]‖ = ‖e2‖[x 7→ ‖v1‖].
This leads to the following derivation.

‖e1‖ ↪→0 ‖v1‖ ‖e2‖[x 7→ ‖v1‖] ↪→0 ‖v‖
let x = ‖e1‖ in ‖e2‖ end ↪→0 ‖v‖

(ev-let)

Hence, ‖let x = e1 in e2 end‖ ↪→0 ‖v‖ is derivable.

e1 ↪→d v1
D =

Λα.e1 ↪→d Λα.v1 By induction hypothesis, ‖e1‖ ↪→0 ‖v1‖ is derivable in ML∀0 . Since
‖Λα.e1‖ = Λα.‖e1‖ and ‖Λα.v1‖ = Λα.‖v1‖, ‖Λα.e1‖ ↪→d ‖Λα.v1‖ is derivable in ML∀0 .

Theorem 6.2.8 Given φ; Γ ` e : σ derivable in ML∀,Π,Σ0 (C). If e0 = ‖e‖ ↪→0 v
0 is derivable for

some v0 in ML∀0, then there exists v in ML∀,Π,Σ0 (C) such that e ↪→d v is derivable and ‖v‖ = v0.

Proof The proof is similar to that of Theorem 5.1.5, and therefore we omit it here.

6.2.3 Elaboration

We slightly extend the external language DML0(C) as follows, yielding the external language
DML(C) for ML∀,Π,Σ0 (C).

expressions e ::= · · · | Λα.e

Theoretically, there are no technical obstacles which prevent us from directly formulating elabo-
ration rules and then constraint generation rules for ML∀,Π,Σ0 (C) as is done for MLΠ,Σ

0 (C). However,
in practice there are some serious disadvantages for doing so, which we briefly explain as follows.

In Chapter 1, we used the following example demonstrating how to refine a polymorphic
datatype into a polymorphic dependent type.

datatype ’a list = nil | cons of ’a * ’a list
typeref ’a list of nat (* indexing datatype ’a list with nat *)
with nil <| ’a list(0)

| cons <| {n:nat} ’a * ’a list(n) -> ’a list(n+1)

After this declaration, cons is of type

∀α.Πn : nat.α ∗ (α)list(n)→ (α)list(n+ 1).

114 CHAPTER 6. POLYMORPHISM

Suppose that we have already refined the type int, assigning the types int(0) and int(1) to 0 and
1, respectively. Now let us see how to elaborate the expression cons(〈0, cons(〈1, nil〉)〉). Intuitively,
we should instantiate the type of the first cons to

int(0) ∗ (int(0))list(n)→ (int(0))list(n+ 1),

and then check cons(〈1, nil〉) against (int(0))list(n + 1). This leads to the instantiation of the
type of the second cons to

int(0) ∗ (int(0))list(n)→ (int(0))list(n+ 1),

and we then check 1 against int(0). This results in a type error since 1 cannot be of type int(0).
In contrast, there exists no problem elaborating cons(0, cons(1, nil)) into an expression of type
(int)list in ML∀0 . This would destroy the precious compatibility property we expect, that is, a
valid ML program written in an external language for ML can always be treated as a valid DML(C)
program. Fortunately, the reader can readily verify that the elaboration of cons(0, cons(1, nil))
would have succeeded if we had started checking it against the type Σa : int.int(a). This ex-
ample shows that it is highly questionable to directly combine the dependent type-checking with
polymorphic type-checking.

There is yet another disadvantage. One main objective of designing a dependent type system
is to enable the programmer to capture more program errors at compile time. Therefore, it is
crucial that adequately informative type error message can be issued once type-checking fails.
This, however, would be greatly complicated if errors resulted from both dependent type-checking
and polymorphic type-checking are mingled together, especially given that it is already difficult
enough to report only errors from polymorphic type-checking.

These practical issues prompt us to adopt a two-phase elaboration for ML∀,Π,Σ0 (C).

Phase One

Theorem 6.2.6 states that if e is well-typed in ML∀,Π,Σ0 (C) then its index erasure ‖e‖ is well-typed in
ML∀0 . Therefore, given a program e in DML(C), if e can be successfully elaborated in ML∀,Π,Σ0 (C),
then its index erasure ‖e‖ can be elaborated in ML∀0 . We use the W-algorithm for polymorphic
type-checking in ML (Milner 1978) to check whether ‖e‖ is well-typed in ML∀0 . This is a crucial
step towards guaranteeing full compatibility of ML∀,Π,Σ0 (C) with ML∀0 in the sense that a program
written in an external language for ML∀0 should always be accepted by ML∀,Π,Σ0 (C) if it is by
ML∀0 . For the parts of a program which use dependent types, we expect this phase of elaboration
to be highly efficient since there are abundant programmer-supplied type annotations available.
In practice, this leads to accurate type error message reports because type-checking is essentially
performed in a top-down fashion.

Phase Two

After the first phase of elaboration, we perform the following.

• If a declared function is not annotated, we annotate it with the ML-type inferred for this
function from phase one.

6.2. EXTENDING MLΠ,Σ
0 (C) TO ML∀,Π,Σ0 (C) 115

(α, α′,pos)
(α, τ1,pos) (α, τ2,pos)

(α, τ1 ∗ τ2,pos)
(α, τ1,neg) (α, τ2,pos)

(α, τ1 → τ2,pos)

α is not α′

(α, α′,neg)
(α, τ1,neg) (α, τ2,neg)

(α, τ1 ∗ τ2,neg)
(α, τ1,pos) (α, τ2,neg)

(α, τ1 → τ2,neg)

(α, τ1, s(1)) · · · (α, τm, s(m))
(α, (τ1, . . . , τn)δ,pos)

(α, τ1, s(1)) · · · (α, τm, s(m))
(α, (τ1, . . . , τn)δ,neg)

Figure 6.7: The inference rules for datatype constructor status

• For a let-expression let x = e1 in e2 end, if the inferred type scheme of x is of form ∀~α.τ ,
we replace every free occurrence of x in e2 with x(~τ) for some appropriate ~τ inferred from
the first phase of elaboration. Notice that these ~τ are ML-types. If the programmer would
like to instantiate ~α with some dependent types, this must be written in the program. For
instance, the array subscript function sub is of the following type;

∀α.(α)array ∗ int→ α

if we need a subscript function which only acts on an array of natural numbers in a block
of code, we can declare let subNat = sub(Σi : nat.int(i)) in . . . end; this assures that the
type variable α in the type of sub is instantiated with the dependent type Σi : nat.int(i),
which is the type of natural numbers.

• If a datatype constructor δ is refined with index objects from sort γ, then we replace all
occurrences of (τ1, . . . , τn)δ with Σa : γ.(τ1, . . . , τn)δ(a). This process is then performed
recursively on τi for i = 1, . . . , n.

After the above processing is done, we can readily elaborate the program in the way described
in Section 5.2. This concludes the informal description of a two-phase elaboration for ML∀,Π,Σ0 (C).

6.2.4 Coercion

Coercion between polymorphic datatypes needs some special care. An informal view is given as
follows. Assume that type τ1 can be coerced into type τ2; if α occurs positively in (α)δ, then
(τ1)δ should be able to coerce into (τ2)δ; if α occurs negatively in (α)δ, then (τ2)δ should be able
to coerce into (τ1)δ. In order to handle more general cases, we introduce the notion of status as
follows.

Let δ be a datatype constructor declared in ML and ci are constructors of type ∀α1 . . .∀αm.τi →
(α1, . . . , αm)δ associated with δ for i = 1, . . . , n. A status s for δ is a function with domain
dom(s) = {1, . . . ,m} and range {pos,neg}. We use s for the dual status of s, that is s(k) = neg
if and only if s(k) = pos for k = 1, . . . ,m.

We say that δ has status s if for every k ∈ dom(s), (αk, τi, s(k)) can be derived for i = 1, . . . , n
with the rules in Figure 6.7.

116 CHAPTER 6. POLYMORPHISM

This can be readily extended to mutually recursively declared datatype constructors in ML.
Assume that a datatype constructor δ is of status s. We say that (τ1, . . . , τm)δ(i) can be coerced

into (τ ′1, . . . , τ
′
m)δ(i) if τk coerces into τ ′k for those k such that s(k) = pos and τ ′k coerces into τk

for the rest.
We currently disallow coercions between (τ1, . . . , τm)δ(i) and (τ ′1, . . . , τ

′
m)δ(i) if δ cannot be

assigned a status. Clearly, it is possible to extend the range of a status function to containing
neutral and mixed, which roughly mean “both positive and negative” and “neither positive nor
negative”, respectively. However, we have yet to see whether such an extension would be of some
practical relevance.

6.3 Summary

Polymorphism is largely orthogonal to the development of dependent types. In this chapter, ML0

is extended to ML∀0 with let-polymorphism, and this sets up the machinery we need for combining
dependent types with let-polymorphism. Then the language ML∀,Π,Σ0 (C) is introduced, which
extends MLΠ,Σ

0 (C) with let-polymorphism. The relation between ML∀,Π,Σ0 (C) and ML∀0 is parallel
to that between MLΠ,Σ

0 (C) and ML0. However, some serious problems show up when elaboration
is concerned. This prompts us to adopt a two-phase elaboration process, which does the usual
ML-type checking in the first phase and the dependent type-checking in the second phase. This
seems to be a clean and practical solution.

ML∀,Π,Σ0 (C) is a pure call-by-value functional programming language, that is, it contains no
imperative features. Therefore, the natural move is to extend ML∀,Π,Σ0 (C) with some imperative
features, which consists the topic of the next chapter.

Chapter 7

Effects

We have so far developed the type theory of dependent types in a pure functional programming
language ML∀,Π,Σ0 (C), which lacks the imperative features of ML. In this chapter, we extend the
language ML∀,Π,Σ0 (C) to accommodate exceptions and references. We will examine the potential
problems and present the approaches to solving them. The organization of the chapter is as follows.

We first extend the language ML0 with the exceptions and formulate the language ML0,exc.
After proving the type preservation theorem for ML0,exc, we extend it with the references. This
yields the language ML0,exc,ref . Again, we prove the type preservation theorem for ML0,exc,ref . We
then exhibit what the problems are if we extend ML∀,Π,Σ0 (C) with references and exceptions. This
leads to adopting the value restriction approach (Wright 1995). Finally, we study the relation
between ML0,exc,ref and ML∀,Π,Σ0,exc,ref(C).

7.1 Exceptions

The exception mechanism is an important feature of ML which allows programs to perform non-
local “jumps” in the flow of control by setting a handler during evaluation of an expression that
may be invoked by raising an exception. Exceptions are value-carrying in the sense that they
can pass values to exception handlers. Because of the dynamic nature of exception handlers, it is
required that all the exception values have a single datatype Exc, which can then be extended by
the programmer. This is called extensible datatype. We assume that Exc is a distinguished built-in
base type, but do not concern ourselves with how constructors in this datatype are created.

7.1.1 Static Semantics

The language ML0 is extended to the language ML0,exc as follows. An answer is either a value or
an uncaught exception.

base types β ::= · · · | Exc
expressions e ::= · · · | raise(e) | handle e with ms
answers ans ::= · · · | raise(v)

In addition to the typing rules for ML0, we need the following ones for handling the newly intro-
duced language constructs.

117

118 CHAPTER 7. EFFECTS

x ↪→0 x
(ev-var)

〈〉 ↪→0 〈〉
(ev-unit)

e ↪→0 raise(v)
c(e) ↪→0 raise(v)

(ev-cons-1)

e ↪→0 v

c(e) ↪→0 c(v)
(ev-cons-2)

e1 ↪→0 raise(v)
〈e1, e2〉 ↪→0 raise(v)

(ev-prod-1)

e1 ↪→0 v1 e2 ↪→0 raise(v)
〈e1, e2〉 ↪→0 raise(v)

(ev-prod-2)

e1 ↪→0 v1 e2 ↪→0 v2

〈e1, e2〉 ↪→0 〈v1, v2〉
(ev-prod-3)

e ↪→0 raise(v)
case e of ms ↪→0 raise(v)

(ev-case-1)

e0 ↪→0 v0 match(v0, pk) =⇒ θ for some 1 ≤ k ≤ n ek[θ] ↪→0 ans

(case e0 of (p1 ⇒ e1 | · · · | pn ⇒ en)) ↪→0 ans
(ev-case-2)

Figure 7.1: The natural semantics for ML0,exc (I)

Γ ` e : τ Γ ` ms : Exc⇒ τ
Γ ` (handle e with ms) : τ

(ty-handle)

Γ ` e : Exc
Γ ` raise(e) : τ

(ty-raise)

7.1.2 Dynamic Semantics

We now present the evaluation rules for ML0,exc in Figure 7.1 and Figure 7.2, upon which the
natural semantics of ML0,exc is established. Notice that a successful evaluation of an expression e
results in either a value or an uncaught exception.

Theorem 7.1.1 (Type preservation) Assume that Γ ` e : τ is derivable in ML0,exc. If e ↪→0 ans
for some answer ans, then Γ ` ans : τ is derivable.

Proof The proof is parallel to the proof of Theorem 2.2.7, following from a structural induction
on the derivation D of e ↪→0 v. We present a few cases.

e1 ↪→0 raise(v1)
D =

raise(e1) ↪→0 raise(v1) The derivation of Γ ` raise(e1) : τ must be of the following

7.1. EXCEPTIONS 119

e1 ↪→0 raise(v)
e1(e2) ↪→0 raise(v)

(ev-app-1)

e1 ↪→0 (lam x : τ.e) e2 ↪→0 raise(v)
e1(e2) ↪→0 raise(v)

(ev-app-2)

e1 ↪→0 (lam x : τ.e) e2 ↪→0 v2 e[x 7→ v2] ↪→0 ans

e1(e2) ↪→0 ans
(ev-app-3)

e1 ↪→0 raise(v)
(let x = e1 in e2 end) ↪→0 raise(v)

(ev-let-1)

e1 ↪→0 v1 e2[x 7→ v1] ↪→0 ans

(let x = e1 in e2 end) ↪→0 ans
(ev-let-2)

(fix f : τ.u) ↪→0 u[f 7→ (fix f : τ.u)]
(ev-fix)

e ↪→0 raise(v)
raise(e) ↪→0 raise(v)

(ev-raise-1)

e ↪→0 v

raise(e) ↪→0 raise(v)
(ev-raise-2)

e ↪→0 raise(v)
handle e with ms ↪→0 raise(v)

(ev-handler-1)

e0 ↪→0 raise(v0) match(v0, pk) =⇒ θ for some 1 ≤ k ≤ n ek[θ] ↪→0 ans

handle e0 with (p1 ⇒ e1 | · · · | pn ⇒ en) ↪→0 ans
(ev-handler-2)

e ↪→0 v
handle e with ms ↪→0 v

(ev-handler-3)

Figure 7.2: The natural semantics for ML0,exc (II)

120 CHAPTER 7. EFFECTS

form.
Γ ` e1 : Exc

Γ ` raise(e1) : τ
(ty-raise)

By induction hypothesis, Γ ` raise(v1) : Exc is derivable. Hence, we have a derivation of
Γ ` v1 : Exc. This leads to the following.

Γ ` v1 : Exc
Γ ` raise(v1) : τ

(ty-raise)

e0 ↪→0 raise(v0) match(v0, pk) =⇒ θ for some 1 ≤ k ≤ n ek[θ] ↪→0 ans
D =

handle e0 with (p1 ⇒ e1 | · · · | pn ⇒ en) ↪→0 ans Then we have
a derivation of the following form.

Γ ` e0 : τ Γ ` (p1 ⇒ e1 | · · · | pn ⇒ en) : Exc⇒ τ

Γ ` (handle e0 with (p1 ⇒ e1 | · · · | pn ⇒ en)) : τ
(ty-handle)

By induction hypothesis, Γ ` raise(v0) : τ is derivable. This leads to the following derivation.

Γ ` v0 : Exc
Γ ` raise(v0) : τ

(ty-raise)

Notice Γ ` pi ⇒ ei : Exc ⇒ τ are derivable for 1 ≤ i ≤ n. Hence pk ↓ Exc � Γ′ is derivable
for some Γ′ and Γ,Γ′ ` ek : τ is derivable. By Lemma 2.2.5, Γ ` θ : Γ′ is derivable. This
leads to a derivation of Γ ` ek[θ] : τ by Lemma 2.2.4. By induction hypothesis, Γ ` ans : τ
is derivable.

e0 ↪→0 v
D =

handle e0 with ms ↪→0 v Then we have a derivation of the following form.

Γ ` e0 : τ Γ ` ms : Exc⇒ τ

Γ ` (handle e0 with ms) : τ
(ty-handle)

By induction hypothesis, Γ ` ans : τ is derivable. Hence, we are done.

All other cases can be treated similarly.

7.2 References

A unique aspect of ML is the use of reference types to segregate mutable data structures from
immutable ones. Given a type τ , the reference type τ ref stands for the type of reference cell
which can only store a value of type τ .

7.2. REFERENCES 121

7.2.1 Static Semantics

The language ML0,exc is extended to the language ML0,exc,ref as follows. An answer is either a
value or an uncaught exception associated with a piece of memory.

types τ ::= · · · | τ ref
expressions e ::= · · · | letref M in e end | e1 := e2 |!e
memory M ::= · |M,x : τ is v
programs prog ::= letref M in e end
answers ans ::= letref M in v end | letref M in raise(v) end

Let dom(M) be defined as follows.

dom(·) = ∅ dom(M,x : τ is v) = dom(M) ∪ {x}

For every x ∈ dom(M), M(x) is v if x : τ is v is declared in M . For x ∈ dom(M), we use
M [x := v] for the memory which replaces with x : τ is v the declaration x : τ is vold in M for some
τ and vold.

We need the following typing rules for handling the newly introduced language constructs.

Γ′ = x1 : τ1 ref , . . . , xn : τn ref Γ,Γ′ ` vi : τi (1 ≤ i ≤ n)
Γ ` (x1 : τ1 is v1, . . . , xn : τ1 is vn) : Γ′

(ty-memo)

Γ `M : Γ′ Γ,Γ′ ` e : τ
Γ ` letref M in e end : τ

(ty-letref)

Γ ` e1 : τ ref Γ ` e2 : τ
Γ ` e1 := e2 : 1

(ty-assign)

Γ ` e : τ ref
Γ `!e : τ

(ty-deref)

Note that we use Ref(e) as an abbreviation for let x = e in letref y : τ is x in y end end.

Example 7.2.1 Given a derivation D of Γ ` e : τ , we can construct the following derivation of
Γ ` Ref(e) : τ ref .

D

Γ, x : τ, y : τ ref ` x : τ
Γ, x : τ ` (y : τ is x) : (y : τ ref) Γ, x : τ, y : τ ref ` y : τ ref

Γ, x : τ ` letref y : τ is x in y end : τ ref
(ty-letref)

Γ ` Ref(e) : τ ref
(ty-let)

7.2.2 Dynamic Semantics

The natural semantics of ML0,exc,ref is given in Figure 7.3 and Figure 7.4.

Proposition 7.2.2 If the following is derivable, then dom(M1) ⊆ dom(M2).

letref M1 in e end ↪→0 letref M2 in v end

122 CHAPTER 7. EFFECTS

letref M in 〈〉 end ↪→0 letref M in 〈〉 end
(ev-unit)

letref M in c end ↪→0 letref M in c end
(ev-cons-wo)

letref M1 in e end ↪→0 letref M2 in raise(v) end
letref M1 in c(e) end ↪→0 letref M2 in raise(v) end

(ev-cons-w-1)

letref M1 in e end ↪→0 letref M2 in v end
letref M1 in c(e) end ↪→0 letref M2 in c(v) end

(ev-cons-w-2)

letref M1 in e1 end ↪→0 letref M2 in raise(v) end
letref M1 in 〈e1, e2〉 end ↪→0 letref M2 in raise(v) end

(ev-prod-1)

letref M1 in e1 end ↪→0 letref M2 in v1 end
letref M2 in e2 end ↪→0 letref M3 in raise(v) end

letref M1 in 〈e1, e2〉 end ↪→0 letref M3 in raise(v) end
(ev-prod-2)

letref M1 in e1 end ↪→0 letref M2 in v1 end
letref M2 in e2 end ↪→0 letref M3 in v2 end

letref M1 in 〈e1, e2〉 end ↪→0 letref M3 in 〈v1, v2〉 end
(ev-prod-3)

letref M1 in e end ↪→0 letref M2 in raise(v) end
letref M1 in case e of ms end ↪→0 letref M2 in raise(v) end

(ev-case-1)

letref M1 in e0 end ↪→0 letref M2 in v0 end
match(v0, pk) =⇒ θ for some 1 ≤ k ≤ n

letref M2 in ek[θ] end ↪→0 ans

letref M1 in case e0 of (p1 ⇒ e1 | · · · | pn ⇒ en) end ↪→0 ans
(ev-case-2)

letref M in lam x : τ.e end ↪→0 letref M in lam x : τ.e end
(ev-lam)

letref M1 in e1 end ↪→0 letref M2 in raise(v) end
letref M1 in e1(e2) end ↪→0 letref M2 in raise(v) end

(ev-app-1)

letref M1 in e1 ↪→0 letref M2 in lam x : τ.e end end
letref M2 in e2 ↪→0 letref M3 in raise(v) end end

letref M1 in e1(e2) end ↪→0 letref M3 in raise(v) end
(ev-app-2)

letref M1 in e1 end ↪→0 letref M2 in (lam x : τ.e) end
letref M2 in e2 end ↪→0 letref M3 in v2 end

letref M3 in e[x 7→ v2] end ↪→0 ans

letref M1 in e1(e2) end ↪→0 ans
(ev-app-3)

Figure 7.3: The natural semantics for ML0,exc,ref (I)

7.2. REFERENCES 123

letref M1 in e1 end ↪→0 letref M2 in raise(v) end
letref M1 in (let x = e1 in e2 end) end ↪→0 letref M2 in raise(v) end

(ev-let-1)

letref M1 in e1 ↪→0 v1 end letref M2 in e2[x 7→ v1] end ↪→0 ans

letref M1 in (let x = e1 in e2 end) end ↪→0 ans
(ev-let-2)

letref M in fix f : τ.u end ↪→0 letref M in u[f 7→ (fix f : τ.u)] end
(ev-fix)

letref M1 in e end ↪→0 letref M2 in raise(v) end
letref M1 in raise(e) end ↪→0 letref M2 in raise(v) end

(ev-raise-1)

letref M1 in e end ↪→0 letref M2 in v end
letref M1 in raise(e) end ↪→0 letref M2 in raise(v) end

(ev-raise-2)

letref M1 in e end ↪→0 letref M2 in raise(v) end
letref M1 in handle e with ms end ↪→0 letref M2 in raise(v) end

(ev-handle-1)

letref M1 in e0 end ↪→0 letref M2 in raise(v0) end
match(v0, pk) =⇒ θ for some 1 ≤ k ≤ n

letref M2 in ek[θ] end ↪→0 ans

letref M1 in handle e0 with (p1 ⇒ e1 | · · · | pn ⇒ en) end ↪→0 ans
(ev-handle-2)

letref M1 in e end ↪→0 letref M2 in v end
letref M1 in handle e with ms end ↪→0 letref M2 in v end

(ev-handle-3)

letref M1,M2 in e end ↪→0 ans

letref M1 in letref M2 in e end end ↪→0 ans
(ev-extrusion)

letref M1 in e1 end ↪→0 letref M2 in raise(v) end
letref M1 in e1 := e2 end ↪→0 letref M2 in raise(v) end

(ev-assign-1)

letref M1 in e1 end ↪→0 letref M2 in x end
letref M2 in e2 end ↪→0 letref M3 in raise(v) end

letref M1 in e1 := e2 end ↪→0 letref M3 in raise(v) end
(ev-assign-2)

letref M1 in e1 end ↪→0 letref M2 in x end
letref M2 in e2 end ↪→0 letref M3 in v end

letref M1 in e1 := e2 end ↪→0 letref M3[x := v] in 〈〉 end
(ev-assign-3)

letref M1 in e end ↪→0 letref M2 in raise(v) end
letref M1 in !e end ↪→0 letref M2 in raise(v) end

(ev-deref-1)

letref M1 in e end ↪→0 letref M2 in x end
letref M1 in !e end ↪→0 letref M2 in M2(x) end

(ev-deref-2)

Figure 7.4: The natural semantics for ML0,exc,ref (II)

124 CHAPTER 7. EFFECTS

Proof This simply follows from the formulation of the evaluation rules. Note that (ev-extrusion)
is the only rule which can expand the memory.

Theorem 7.2.3 (Type preservation) Given a program P = letref M in e end, if · ` P : τ and
P ↪→0 ans are derivable in ML0,exc,ref , then · ` ans : τ is also derivable in ML0,exc,ref .

Proof The proof proceeds by a structural induction on the derivation D of P ↪→0 ans. We
present a few cases.

letref M1,M2 in e end ↪→0 ans
D =

letref M1 in letref M2 in e end end ↪→0 ans Then we have the following derivation.

· `M1 : Γ1

Γ1 `M2 : Γ2 Γ1,Γ2 ` e : τ
Γ1 ` letref M2 in e end : τ

(ty-letref)

· ` letref M1 in letref M2 in e end end : τ
(ty-letref)

Since · `M1 : Γ1 and Γ1 `M2 : Γ2 are derivable, · `M1,M2 : Γ1,Γ2 is derivable. This leads
to the following.

· `M1,M2 : Γ1,Γ2 Γ1,Γ2 ` e : τ
· ` letref M1,M2 in e end : τ

(ty-letref)

By induction hypothesis, · ` ans : τ is derivable.

letref M1 in e1 end ↪→0 letref M2 in x end
letref M2 in e2 end ↪→0 letref M3 in v end

D =
letref M1 in e1 := e2 end ↪→0 letref M3[x := v] in 〈〉 end Then we have a derivation

of the following form.

· `M1 : Γ1

Γ1 ` e1 : τ ref Γ1 ` e2 : τ
Γ1 ` e1 := e2 : 1

(ty-assign)

· ` letref M1 in e1 := e2 end : 1
(ty-letref)

This leads to the following.

· `M1 : Γ1 Γ1 ` e1 : τ ref
· ` letref M1 in e1 end : τ ref

(ty-letref)

By induction hypothesis, · ` letref M2 in x end : τ ref is derivable. This implies that
· `M2 : Γ2 is derivable for some Γ2 such that Γ2(x) = τ ref . By Proposition 7.2.2, M1 ⊆M2.
Hence, Γ1 ⊆ Γ2, and we have the following derivation.

· `M2 : Γ2 Γ2 ` e2 : τ
· ` letref M2 in e2 end

(ty-letref)

By induction hypothesis, · ` letref M3 in v end : τ is derivable. This implies that we can
derive · ` M3 : Γ3 for some Γ3 and Γ2 ⊆ Γ3. Therefore, · ` M3[x := v] : Γ3 is also derivable,
and this yields the following.

· `M3[x := v] : Γ3 Γ3 ` 〈〉 : 1
· ` letref M3 in 〈〉 end : 1

(ty-letref)

7.3. VALUE RESTRICTION 125

letref M1 in e end ↪→0 letref M2 in x end
D =

letref M1 in !e end ↪→0 letref M2 in M2(x) end Then we have a derivation of the fol-
lowing form.

· `M1 : Γ1

Γ1 ` e : τ ref
Γ1 `!e : τ

(ty-deref)

· ` letref M1 in !e end : τ
(ty-letref)

This leads to the following.

· `M1 : Γ1 Γ1 ` e1 : τ ref
· ` letref M1 in e1 end : τ ref

(ty-letref)

By induction hypothesis, · ` letref M2 in x end : τ ref is derivable. This implies · `M2 : Γ2

is derivable for some Γ2 such that Γ2(x) = τ ref . This then implies that Γ2 ` M2(x) : τ is
derivable. Therefore, we have the following.

· `M2 : Γ2 Γ2 `M2(x) : τ
· ` letref M2 in M2(x) end : τ

(ty-letref)

The rest of the cases can be handled in a similar manner.

The next theorem generalizes Theorem 2.1.4.

Theorem 7.2.4 We have letref M in v end ↪→0 letref M in v end for all memory M and
values v in ML0,exc,ref .

Proof This simply follows from a structural induction on v.

7.3 Value Restriction

We first mention some problems if we extend ML0,exc,ref with dependent types and/or polymor-
phism. Let us take a look at the following evaluation rules.

e ↪→d v

(λa : γ.e) ↪→d (λa : γ.v)
(ev-ilam)

(lam x : τ.e) ↪→d (lam x : τ.e)
(ev-lam)

e ↪→d v
Λα.e ↪→d Λα.v

(ev-poly)

Clearly, evaluation can occur under both λ and Λ but cannot under lam. This can introduce
a serious problem when we extend the language ML∀,Π,Σ0 (C) with effects such as exceptions and
references. For instance, the following cases arise immediately.

1. If evaluation is allowed under λ, then the following rule must be adopted since an exception
may be raised during the evaluation of e.

e ↪→d raise(v)
(λa : γ.e) ↪→d raise(v)

(ev-ilam-raise)

However, v may contain some free occurrences of a when this rule is applied.

126 CHAPTER 7. EFFECTS

2. Similarly, we must adopt the following rule if evaluation is allowed under λ.

letref M1,M2 in λa : γ.e end ↪→0 ans

letref M1 in λa : γ.letref M2 in e end end ↪→0 ans
(ev-ilam-extrusion)

However, M2 may contain some free occurrences of a when this rule is applied.

3. If evaluation is allowed under Λ, then we need the following rule since an exception may be
raised during the evaluation of e.

e ↪→d raise(v)
(Λα.e) ↪→d raise(v)

(ev-poly-raise)

The problem is that v may contain some free occurrences of α.

4. Similarly, the following rule is also needed.

letref M1,M2 in Λα.e end ↪→0 ans

letref M1 in Λα.letref M2 in e end end ↪→0 ans
(ev-poly-extrusion)

The problem is that M2 may contain some free occurrences of α.

In all of these cases, some bound variables become unbound after the evaluation. Clearly, this
must be addressed if we extend ML0,exc,ref with let-polymorphism as well as dependent types.

A radical solution to all the problems above is to make sure that we never evaluate under either
λ or Λ. In other words, we should adopt instead the following rules.

(λa : γ.e) ↪→d (λa : γ.e)
(ev-ilam)

Λα.e ↪→d Λα.e
(ev-poly)

This seems to be a clean solution. Unfortunately, the adoption of the above rules immediately
falsifies Theorem 6.2.7 and Theorem 6.2.8 for the obvious reason that neither ‖λa : γ.e‖ nor
‖Λα.e‖ is a value if ‖e‖ is not. In order to overcome this difficulty, we require that e be a value
whenever either λa : γ.e or Λα.e occurs in an expression. This can be achieved if we require ‖e‖
to be a value when the following typing rules are applied.

φ, a : γ; ∆; Γ ` e : τ
φ; ∆; Γ ` (λa : γ.e) : (Πa : γ.τ)

(ty-ilam)

·; ∆, α; Γ ` e : σ
·; ∆; Γ ` Λα.e : ∀α.σ (ty-poly-intro)

This is called value restriction. In other words, we should formulate the above rules as follows.

φ, a : γ; ∆; Γ ` v : τ
φ; ∆; Γ ` (λa : γ.v) : (Πa : γ.τ)

(ty-ilam)

·; ∆, α; Γ ` v : σ
·; ∆; Γ ` Λα.v : ∀α.σ (ty-poly-intro)

From now on, we always assume that value restriction is imposed unless it is stated otherwise
explicitly.

7.4. EXTENDING ML0,EXC,REF WITH POLYMORPHISM AND DEPENDENT TYPES 127

7.4 Extending ML0,exc,ref with Polymorphism and Dependent Types

In this section, we extend ML0,exc,ref with let-polymorphism and dependent types, leading to the
language ML∀,Π,Σ0,exc,ref(C). Therefore, we have finally designed a language in which there are features
such as references, exceptions, let-polymorphism and both universal and existential dependent
types. Since the core of ML, that is ML without module level constructs, is basically ML0,exc,ref

with let-polymorphism, we claim that we have presented a practical approach to extending the
core of ML with dependent types. We regard this as the key contribution of the thesis.

The complete syntax of ML∀,Π,Σ0,exc,ref(C) is given in Figure 7.5. The typing rules for ML∀,Π,Σ0,exc,ref(C)

are those presented in Figure 6.6 plus those in Figure 7.6. Also the natural semantics of ML∀,Π,Σ0,exc,ref(C)
is given in terms of the evaluation rules listed in Figure 7.3 and Figure 7.4 plus those in Figure 7.7.

Lemma 7.4.1 (Substitution) We have the following.

1. If both φ ` i : γ and φ, a : γ; ∆; Γ ` e : τ are derivable, then φ; ∆; Γ[a 7→ i] ` e[a 7→ i] : τ [a 7→ i]
is also derivable.

2. If both ∆ ` τ : ∗ and φ; ∆, α; Γ ` e : σ are derivable, then φ; ∆; Γ[α 7→ τ] ` e[α 7→ τ] : σ[α 7→
τ] is also derivable.

3. If both φ; ∆; Γ ` v : σ1 and φ; ∆; Γ, x : σ1 ` e : σ are derivable, then φ; ∆; Γ ` e[x 7→ v] : σ is
also derivable.

Proof The proof is standard and therefore omitted here. Please see the proof of Lemma 4.1.4
for some relevant details.

Theorem 7.4.2 (Type preservation for ML∀,Π,Σ0,exc,ref(C)) If both e ↪→d ans : σ and ·; ·; · ` e : σ are

derivable in ML∀,Π,Σ0,exc,ref(C), then ·; ·; · ` ans : σ is also derivable ML∀,Π,Σ0,exc,ref(C).

Proof The proof follows from a structural induction on the derivation D of e ↪→d ans and the
derivation of ·; ·; · ` e : σ, lexicographically ordered. We present a few cases.

letref M1 in e1 end ↪→d letref M2 in λa : γ.v end
D =

letref M1 in e1[i] end ↪→d letref M2 in v[a 7→ i] end Then we have a derivation of the
following form since ·; ·; · ` letref M1 in e1[i] end : σ is derivable, where σ = τ [a 7→ i].

·; ·; Γ1 ` e1 : Πa : γ.τ · ` i : γ
·; ·; Γ1 ` e1[i] : τ [a 7→ i]

(ty-iapp) ·; ·; · `M1 : Γ1

·; ·; · ` letref M1 in e1[i] end : τ [a 7→ i]
(ty-letref)

This yields the following derivation.

·; ·; Γ1 ` e1 : Πa : γ.τ ·; ·; · `M1 : Γ1

·; ·; · ` letref M1 in e1 end : Πa : γ.τ
(ty-letref)

128 CHAPTER 7. EFFECTS

families δ ::= (family of refined datatypes)
signatures S ::= ·S | S, δ : ∗ → · · · → ∗ → γ → ∗

| S, c : Λα1. . . .Λαm.Πa1 : γ1 . . .Πan : γn.(α1, . . . , αm)δ(i)
| S, c : Λα1. . . .Λαm.Πa1 : γ1 . . .Πan : γn.τ → (α1, . . . , αm)δ(i)

major types µ ::= α | (α1, . . . , αm)δ(i) | 1 | (τ1 ∗ τ2) | (τ1 → τ2)
types τ ::= µ | (Πa : γ.τ) | (Σa : γ.τ)
type schemes σ ::= τ | Λα.σ
patterns p ::= x | c(α1) . . . (αm)[a1] . . . [an] | c(α1) . . . (αm)[a1] . . . [an](p)

| 〈〉 | 〈p1, p2〉
matches ms ::= (p⇒ e) | (p⇒ e | ms)
expressions e ::= x | 〈〉 | 〈e1, e2〉

| c(τ1) . . . (τm)[i1] . . . [in] | c(τ1) . . . (τm)[i1] . . . [in](e)
| (case e of ms) | (lam x : τ.e) | e1(e2)
| let x = e1 in e2 end | (fix f : τ.v)
| raise(e) | handle e with ms
| e1 := e2 | !e
| letref M in e end
| (λa : γ.v) | e[i]
| 〈i | e〉 | let 〈a | x〉 = e1 in e2 end
| Λα.v

value forms u ::= c(τ1) . . . (τm)[i1] . . . [in] | c(τ1) . . . (τm)[i1] . . . [in](u) | 〈〉
| 〈u1, u2〉 | lam x : τ.e | (λa : γ.u) | 〈i | u〉

values v ::= x(τ1) . . . (τm) | c(τ1) . . . (τm)[i1] . . . [in] | c(τ1) . . . (τm)[i1] . . . [in](v)
| 〈〉 | 〈v1, v2〉 | (lam x : τ.e) | (λa : γ.v) | 〈i | v〉 | (Λα.v)

memories M ::= · |M,x : τ is v
programs prog ::= letref M in e end
answers ans ::= letref M in v end | letref M in raise(v) end
contexts Γ ::= · | Γ, x : σ
type var ctxts ∆ ::= · | ∆, α
index contexts φ ::= · | φ, a : γ
substitutions θ ::= [] | θ[x 7→ v] | θ[a 7→ i] | θ[α 7→ τ]

Figure 7.5: The syntax for ML∀,Π,Σ0,exc,ref(C)

7.4. EXTENDING ML0,EXC,REF WITH POLYMORPHISM AND DEPENDENT TYPES 129

φ; ∆; Γ ` e : τ φ; ∆; Γ ` ms : Exc⇒ τ

φ; ∆; Γ ` (handle e with ms) : τ
(ty-handle)

φ; ∆ ` τ : ∗ φ; ∆; Γ ` e : Exc
φ; ∆; Γ ` raise(e) : τ

(ty-raise)

Γ′ = x1 : τ1 ref , . . . , xn : τn ref φ; ∆; Γ′,Γ ` vi : τi (1 ≤ i ≤ n)
φ; ∆; Γ ` (x1 : τ1 is v1, . . . , xn : τn is vn) : Γ′

(ty-memo)

φ; ∆; Γ `M : Γ′ φ; ∆; Γ,Γ′ ` e : τ
φ; ∆; Γ ` letref M in e end : τ

(ty-letref)

φ; ∆; Γ ` e1 : τ ref φ; ∆; Γ ` e2 : τ
φ; ∆; Γ ` e1 := e2 : 1

(ty-assign)

φ; ∆; Γ ` e : τ ref
φ; ∆; Γ `!e : τ

(ty-deref)

Figure 7.6: Additional typing rules for ML∀,Π,Σ0,exc,ref(C)

letref M in λa : γ.v end ↪→d letref M in λa : γ.v end
(ev-ilam)

letref M1 in e end ↪→d letref M2 in raise(v) end
letref M1 in e[i] end ↪→d letref M2 in raise(v) end

(ev-iapp-1)

letref M1 in e end ↪→d letref M2 in λa : γ.v end
letref M1 in e[i] end ↪→d letref M2 in v[a 7→ i] end

(ev-iapp-2)

letref M1 in e end ↪→d letref M2 in raise(v) end
letref M1 in 〈i | e〉 end ↪→d letref M2 in raise(v) end

(ev-sig-intro-1)

letref M1 in e end ↪→d letref M2 in v end
letref M1 in 〈i | e〉 end ↪→d letref M2 in 〈i | v〉 end

(ev-sig-intro-1)

letref M1 in e1 end ↪→d letref M2 in raise(v) end
letref M1 in let 〈a | x〉 = e1 in e2 end end ↪→d letref M2 in raise(v) end

(ev-sig-elim-1)

letref M1 in e1 end ↪→d letref M2 in 〈i | v〉 end
letref M2 in e2[a 7→ i][x 7→ v] end ↪→d ans

letref M1 in let 〈a | x〉 = e1 in e2 end end ↪→d letref M2 in ans end
(ev-sig-elim-2)

letref M in Λα.v end ↪→d letref M in Λα.v end
(ev-poly)

Figure 7.7: Additional evaluation rules for ML∀,Π,Σ0,exc,ref(C)

130 CHAPTER 7. EFFECTS

By induction hypothesis, ·; ·; · ` letref M2 in λa : γ.v end : Πa : γ.τ is derivable. Therefore,
we have a derivation of the following form.

·; ·; Γ2 ` λa : γ.v : Πa : γ.τ ·; ·; · `M2 : Γ2

·; ·; · ` letref M2 in λa : γ.v end : Πa : γ.τ
(ty-letref)

By inversion, we can assume that a : γ; ·; Γ2 ` v : τ is derivable. Therefore, by Lemma 7.4.1 (1),
·; ·; Γ2 ` v[a 7→ i] : τ [a 7→ i] is derivable since a has no free occurrences in Γ2.

This leads to the following derivation of ·; ·; · ` letref M2 in v[a 7→ i] end : τ [a 7→ i].

·; ·; Γ2 ` v[a 7→ i] : τ [a 7→ i] ·; ·; · `M2 : Γ2

·; ·; · ` letref M2 in v[a 7→ i] end : τ [a 7→ i]
(ty-letref)

letref M1 in e1 end ↪→d letref M2 in 〈i | v〉 end
letref M2 in e2[a 7→ i][x 7→ v] end ↪→d ansD =

letref M1 in let 〈a | x〉 = e1 in e2 end end ↪→d letref M2 in ans end Then we have
a derivation of the following form.

·; ·; Γ1 ` e1 : Σa : γ.τ a : γ; ·; Γ1, x : τ ` e2 : σ
·; ·; Γ1 ` let 〈a | x〉 = e1 in e2 end : σ

(ty-sig-elim) ·; ·; · `M1 : Γ1

·; ·; · ` letref M1 in let 〈a | x〉 = e1 in e2 end : σ end
(ty-letref)

This yields the following derivation.

·; ·; Γ1 ` e1 : Σa : γ.τ ·; ·; · `M1 : Γ1

·; ·; · ` letref M1 in e1 end : Σa : γ.τ
(ty-letref)

By induction hypothesis, ·; ·; · ` letref M2 in 〈i | v〉 end : Σa : γ.τ is derivable. Therefore,
we have a derivation of the following form.

·; ·; Γ2 ` v : τ [a 7→ i] φ ` i : γ
·; ·; Γ2 ` 〈i | v〉 : Σa : γ.τ

(ty-sig-intro) ·; ·; · `M2 : Γ2

·; ·; · ` letref M2 in 〈i | v〉 end : Σa : γ.τ
(ty-letref)

Note that ·; ·; Γ1 ` e2[a 7→ i][x 7→ v] : σ is also derivable by Lemma 7.4.1. This leads to the
following.

·; ·; Γ2 ` e2[a 7→ i][x 7→ v] : σ ·; ·; · `M2 : Γ2

·; ·; · ` letref M2 in e2[a 7→ i][x 7→ v] end : σ
(ty-letref)

By induction hypothesis, ans is of type σ.

All other cases can be dealt with in a similar manner.

Given ML∀,Π,Σ0,exc,ref(C), it is straightforward to form the language ML∀0,exc,ref , which extends
ML0,exc,ref with let-polymorphism. Note that value restriction is also imposed to guarantee the
soundness of the type system of ML∀0,exc,ref . We leave the details for the interested reader.

7.4. EXTENDING ML0,EXC,REF WITH POLYMORPHISM AND DEPENDENT TYPES 131

We now extend the definition of the index erasure function as follows.

‖ · ‖ = ·
‖raise(e)‖ = raise(‖e‖)
‖handle e with ms‖ = handle ‖e‖ with ‖ms‖
‖M,x is v‖ = ‖M‖, x is ‖v‖
‖letref M in e end‖ = = letref ‖M‖ in ‖e‖ end

Theorem 7.4.3 Suppose that ·; ·; · ` e : σ is derivable in ML∀,Π,Σ0,exc,ref(C). If e ↪→d ans is also

derivable in ML∀,Π,Σ0,exc,ref(C), then ‖e‖ ↪→0 ‖ans‖ is derivable in ML∀0,exc,ref .

Proof This follows from a structural induction on the derivation D of e ↪→d ans and the derivation
of ·; ·; · ` e : σ, lexicographically ordered. We present a few cases.

D =
letref M in λa : γ.v end ↪→d letref M in λa : γ.v end] Notice that we have the fol-

lowing.
‖letref M in λa : γ.v end‖ = letref ‖M‖ in ‖v‖ end.

By Proposition 7.2.4, we have

letref ‖M‖ in ‖v‖ end ↪→0 letref ‖M‖ in ‖v‖ end

since ‖v‖ is obviously a value.

D =
letref M in Λα.v end ↪→d letref M in Λα.v end Notice that we have the following.

‖letref M in Λα.v end‖ = letref ‖M‖ in ‖v‖ end.

By Proposition 7.2.4, we have

letref ‖M‖ in ‖v‖ end ↪→0 letref ‖M‖ in ‖v‖ end

since ‖v‖ is obviously a value.

All other cases can be treated as done in the proof of Theorem 6.1.3.

Suppose that we formulate a reduction semantics for ML∀,Π,Σ0,exc,ref(C). Then a legitimate question to
ask is whether an expression of form Λα.e (λa : γ.e) for some non-value e can be generated during
the reduction of a program p in which there are no such expressions. The answer is negative since
ML∀,Π,Σ0,exc,ref(C) is a call-by-value language. Therefore, not surprisingly, a type preservation theorem

for ML∀,Π,Σ0,exc,ref(C) can also be formulated and proven using reduction semantics. Usually, such a
theorem is called subject reduction theorem. We leave the details for the interested reader.

Theorem 7.4.4 Suppose that ·; ·; · ` e : σ is derivable in ML∀,Π,Σ0,exc,ref(C). If ‖e‖ ↪→0 ans0 is

derivable in ML∀0,exc,ref , then e ↪→d ans is also derivable in ML∀,Π,Σ0,exc,ref(C) for some ans such that
‖ans‖ = ans0.

132 CHAPTER 7. EFFECTS

Proof The proof proceeds by a structural induction on the derivation D0 of ‖e‖ ↪→0 ans0 and
the derivation D of ·; ·; · ` e : σ, lexicographically ordered. We present one case.

·; ·; · ` e0 : τ ·; ·; · ` ms : Exc⇒ τ
D =

·; ·; · ` (handle e0 with ms) : τ Then we have

‖e‖ = ‖handle e0 with ms‖ = handle ‖e0‖ with ‖ms‖.

The derivation D0 of ‖e‖ ↪→0 ans0 must be one of the following forms.

letref · in ‖e0‖ end ↪→0 letref M0 in raise(v0) end
D0 =

letref · in handle ‖e0‖ with ‖ms‖ end ↪→0 letref M0 in raise(v0) end By in-
duction hypothesis, letref · in e0 end ↪→d letref M in raise(v) end is derivable for
some M and v such that ‖M‖ = M0 and ‖v‖ = v0. This leads to the following.

letref · in e0 end ↪→d letref M in raise(v) end
letref · in handle e0 with ms end ↪→d letref M in raise(v) end

(ev-handle-1)

Hence, we are done.

letref · in ‖e0‖ end ↪→0 letref M0 in raise(v0) end
match(v0, ‖pk‖) =⇒ θ0 for some 1 ≤ k ≤ n

letref M0 in ‖ek‖[θ0] end ↪→0 ans0D0 =
letref · in handle ‖e0‖ with (p1 ⇒ e1 | · · · | pn ⇒ en) end ↪→0 ans0 By induc-

tion hypothesis, letref · in e0 end ↪→d letref M in raise(v) end is derivable for some
M and v such that ‖M‖ = M0 and ‖v‖ = v0. By Theorem 7.4.2, ·; ·; · ` v : σ is derivable.
By Proposition 6.2.1, match(v, pk) =⇒ θ is derivable for some θ such that ‖θ‖ = θ0, and
therefore, ‖ek[θ]‖ = ‖ek‖[θ0]. By induction hypothesis, letref M in ek[θ] end ↪→d ans
for some ans such that ‖ans‖ = ans0. This leads to the following.

letref · in e0 end ↪→d letref M in raise(v) end
match(v, pk) =⇒ θ for some 1 ≤ k ≤ n

letref M in ek[θ] end ↪→d ans

letref · in handle e0 with (p1 ⇒ e1 | · · · | pn ⇒ en) end ↪→d ans
(ev-handle-2)

This concludes the subcase.

letref · in ‖e0‖ end ↪→0 letref M0 in v0 end
D0 =

letref · in handle ‖e0‖ with ‖ms‖ end ↪→0 letref M0 in v0 end By induction
hypothesis, letref · in e0 end ↪→d letref M in v end is derivable for some M and v
such that ‖M‖ = M0 and ‖v‖ = v0. This leads to the following.

letref · in e0 end ↪→0 letref M in v end
letref · in handle e0 with ms end ↪→0 letref M in v end

(ev-handle-3)

Hence, we are done.

7.5. ELABORATION 133

All other cases can be treated similarly.

We have thus extended the entire core of ML with dependent types. Given the comprehensive
features of the core of ML, this really is a solid justification on the feasibility of our approach to
making dependent types available in practical programming. Naturally, the next move is to enrich
the module system of ML with dependent types, which we regard as a primary future research
topic.

7.5 Elaboration

We briefly explain how elaboration for ML∀,Π,Σ0,exc,ref(C) is performed. We concentrate on the newly

introduced language constructs rather than present all the elaboration rules as done for MLΠ,Σ
0 (C),

which is simply too overwhelming in this case. We also ignore type variables since polymorphism
is large orthogonal to dependent types as explained in Chapter 6.

The elaboration rules for references and exceptions are listed in Figure 7.8. We omit the
formulation of the corresponding constraint generation rules. Also it is a routine to formulate and
prove a similar version of Theorem 5.2.6 for ML∀,Π,Σ0,exc,ref(C), which justifies the correctness of these
elaboration rules. We leave out details since we have adequately presented in the previous chapters
the techniques needed for fulfilling such a task.

7.6 Summary

In this chapter we studied the interactions between dependent types and effects such as references
and exceptions. Like polymorphism, dependent types cannot be combined with effects directly
for the type system would be unsound otherwise. A clean solution to this problem is to adopt a
value restriction on formulating expressions of dependent function types. The development seems
to be straightforward after this adoption. However, this problem also exhibits another inadequate
aspect of the type system of ML for it cannot distinguish the functions which have effects from
those which do not. It will be interesting to see how this can be remedied in future research.

The type system of ML∀,Π,Σ0,exc,ref(C), which includes let-polymorphism, effects and dependent
types, has reached the stage where it is difficult to manipulate without mechanical assistance. For
instance, we presented only one case in the proof of Theorem 7.4.4, and left out dozens. Since
almost all the proofs in this thesis are based on some sort of structural induction, it seems highly
relevant to investigate whether an interactive theorem prover with certain automation features can
accomplish the task of fulfilling the cases that we omitted. The interested reader can find some
related research in (Schürmann and Pfenning 1998).

134 CHAPTER 7. EFFECTS

φ ` τ : ∗ φ; Γ ` e ↓ Exc⇒ e∗

φ; Γ ` raise(e) ↓ τ ⇒ raise(e∗)
(elab-raise)

φ; Γ ` e ↑ τ ⇒ e∗ φ; Γ ` ms ↓ (Exc⇒ τ)⇒ ms∗

φ; Γ ` (handle e with ms) ↑ τ ⇒ (handle e∗ with ms∗)
(elab-handle-up)

φ; Γ ` e ↓ τ ⇒ e∗ φ; Γ ` ms ↓ (Exc⇒ τ)⇒ ms∗

φ; Γ ` (handle e with ms) ↓ τ ⇒ (handle e∗ with ms∗)
(elab-handle-down)

φ; Γ ` e ↑ τ ⇒ e∗

φ; Γ ` Ref(e) ↑ τ ref ⇒ Ref(e∗)
(elab-ref-up)

φ; Γ ` e ↓ τ ⇒ e∗

φ; Γ ` Ref(e) ↓ τ ref ⇒ Ref(e∗)
(elab-ref-down)

φ; Γ ` e ↑ τ ref ⇒ e∗

φ; Γ `!e ↑ τ ⇒!e∗
(elab-deref-up)

φ; Γ ` e ↓ τ ref ⇒ e∗

φ; Γ `!e ↓ τ ⇒!e∗
(elab-deref-down)

φ; Γ ` e1 ↑ τ ref ⇒ e∗1 φ; Γ ` e2 ↓ τ ⇒ e∗2
φ; Γ ` e1 := e2 ↑ 1⇒ e∗1 := e∗2

(elab-assign-up)

φ; Γ ` e1 ↑ τ ref ⇒ e∗1 φ; Γ ` e2 ↓ τ ⇒ e∗2
φ; Γ ` e1 := e2 ↓ 1⇒ e∗1 := e∗2

(elab-assign-down)

Figure 7.8: Some elaboration rules for references and exceptions

Chapter 8

Implementation

We have finished a prototype implementation of dependent type inference in Standard ML of New
Jersey, version 110. The implementation corresponds closely to the theory developed in the previous
chapters. All the examples presented in Appendix A have been verified in this implementation.

In this chapter, we account for some decisions we made during this implementation. However,
this chapter is not meant to be complete instructions for using the prototype implementation.
The syntax for the expressions recognized by the implementation is similar to that of the external
language DML(C) for ML∀,Π,Σ0,exc,ref(C), including let-polymorphism, references, exceptions, universal
and existential dependent types. The record types, which can be regarded as a sugared version of
product types, are not available at this moment. Most of the features can be found in the examples
presented in Appendix A.

The grammar for a sugared version of DML(C) closely resembles that of Standard ML in the
sense that a DML(C) program becomes an SML one if all syntax related to type index objects is
erased. Therefore, we will only briefly go over the syntax related to dependent types. Also note
that the explanation will be given in an informal way since most of the syntax for DML(C) is likely
to change in future implementations.

Lastly, we will move on to mention some issues on implementing the elaboration algorithm
presented in Chapter 5.

8.1 Refinement of Built-in Types

We have refined the built-in types int, bool and ’a array in ML below.

• int is refined into infinitely many singleton types int(n), where n are of integer values. In
other words, if a value v is of type int(n) for some n, then v is equal to n. As a consequence,
int becomes a shorthand for Σn : int.int(n).

• bool is refined into two singleton types bool(b), where b is either > or ⊥. true and false are
assigned types bool(>) and bool(⊥) respectively. As a consequence, bool is a shorthand for
Σb : o.bool(b).

• ’a arrayis refined into infinitely many dependent types ’a array(n) where n stands for the
size of the array.

135

136 CHAPTER 8. IMPLEMENTATION

+ : Πm : int.Πn : int.int(m) ∗ int(n)→ int(m+ n)
− : Πm : int.Πn : int.int(m) ∗ int(n)→ int(m− n)
× : Πm : int.Πn : int.int(m) ∗ int(n)→ int(m ∗ n)
÷ : Πm : int.Πn : int.int(m) ∗ int(n)→ int(div(m,n))
% : Πm : int.Πn : int.int(m) ∗ int(n)→ int(mod(m,n))

< : Πm : int.Πn : int.int(m) ∗ int(n)→ bool(m < n)
≤ : Πm : int.Πn : int.int(m) ∗ int(n)→ bool(m ≤ n)
= : Πm : int.Πn : int.int(m) ∗ int(n)→ bool(m = n)
> : Πm : int.Πn : int.int(m) ∗ int(n)→ bool(m > n)
≥ : Πm : int.Πn : int.int(m) ∗ int(n)→ bool(m ≥ n)

array : Λα.Πn : nat.α ∗ int(n)→ (α)array(n)
length : Λα.Πn : nat.(α)array(n)→ int(n)

Figure 8.1: Dependent types for some built-in functions

Also we have assigned dependent types to some built-in functions on integers, booleans and arrays.

8.2 Refinement of Datatypes

During the development of various dependent type systems in previous chapters, we implicitly
assumed that a declared (polymorphic) datatype constructor δ : ∗ → · · · → ∗ → ∗ in ML can be
refined into a dependent datatype constructor δ : ∗ → · · · → ∗ → γ → ∗ for some index sort γ, and
every constructor c associated with δ of type Λα1. · · · .Λαm.τ → δ is then assigned a dependent
type of form

Λα1 . . .Λαm.Πa1 : γ. . . .Πan : γn.τ → (α1, . . . , αm)δ(a1, . . . , an),

where γ1 ∗ · · · ∗γn = γ. We now use an example to illustrate how a datatype refinement declaration
is formulated in the implementation.

Given the datatype constructor tree as follows,

datatype ’a tree = Leaf | Branch of ’a * ’a tree * ’a tree

the following is a datatype refinement declaration for tree.

typeref ’a tree of nat with
Leaf <| ’a tree(0)

| Branch <|
{sl:nat, sr:nat} ’a * ’a tree(sl) * ’a tree(sr) -> ’a tree(1+sl+sr)

This declaration states that the datatype constructor tree : ∗ → ∗ has been refined into a dependent
datatype constructor tree : ∗ → nat→ ∗. Also the associated constructors Leaf and Branch have

8.3. TYPE ANNOTATIONS 137

been assigned the following types, respectively.

Λα.(α)tree(0) and Λα.Πsl : nat.Πsr : nat.α ∗ (α)tree(sl) ∗ (α)tree(sr)→ (α)tree(1 + sl + sr)

Clearly, the meaning of the type index i in (α)tree(i) is the size of the tree. If one would like to
index a tree with its height, then the following declaration suffices.

typeref ’a tree of nat with
Leaf <| ’a tree(0)

| Branch <|
{hl:nat, hr:nat} ’a * ’a tree(sl) * ’a tree(sr) -> ’a tree(1+max(hl, hr))

Moreover, if one would like to index a tree with both its size and its height, then the declaration
can be written as follows.

typeref ’a tree of nat * nat with
Leaf <| ’a tree(0, 0)

| Branch <|
{{sl:nat, sr:nat, hl:nat, hr:nat}
’a * ’a tree(sl, hl) * ’a tree(sr, hr) -> ’a tree(1+sl+sr, 1+max(hl, hr))

More sophisticated datatype refinement declarations can be found in the examples presented in
Appendix A. Note that a datatype can be refined at most once in the current implementation for
the sake of simplicity.

8.3 Type Annotations

The constraint generation rules for elaboration presented in Chapter 5 require that the programmer
supply adequate type annotations. Roughly speaking, the dependent types of declared function
should be determined by the programmer rather than synthesized during elaboration. The main
reason for this is that, unlike in ML, there exists no notion of principal types in MLΠ,Σ

0 (C).
The type annotation for a function can be supplied through the use of a where clause following

the function declaration. Suppose that the following datatype refinement has been declared.

datatype ’a list = nil | cons of ’a * ’a list

typeref ’a list of nat with
nil <| ’a list(0)

| cons <| {n:nat} ’a * ’a list(n) -> ’a * ’a list(n+1)

Then the following function declaration contains a type annotation for the declared function
reverse.

fun(’a)
reverse(nil) = nil

| reverse(cons(x, xs)) = reverse(xs) @ cons(x, nil)
where reverse <| {n:nat} ’a list(n) -> ’a list(n)

138 CHAPTER 8. IMPLEMENTATION

The type annotation states that the reverse is a function of type Πn : nat.(α)list(n)→ (α)list(n).
The above declaration roughly corresponds to the following expression in DML(C).

Λα.fix reverse : Πn : nat.(α)list(n)→ (α)list(n).
λn.lam l.case l of nil⇒ nil | cons(〈x, xs〉)⇒ reverse(xs)@cons(〈x, nil〉)

There is another form of type annotation shown in the following example, which is a slight variant
of the example in Figure 1.1.

fun(’a){n:nat}
reverse(l) =
let

fun rev(nil, ys) = ys
| rev(cons(x, xs), ys) = rev(xs, cons(x, ys))

where rev <| {m:nat}{n:nat} ’a list(m) * ’a list(n) -> ’a list(m+n)
in rev(l, nil) end

where reverse <| ’a list(n) -> ’a list(n)

reverse is now defined in the tail-recursive style. Notice that {n:nat} follows fun(’a) in this
declaration, which corresponds to the following expression in DML(C).

Λα.λn : nat.fix reverse : (α)list(n)→ (α)list(n).
let rev = fix rev : Πm : nat.Πn : nat.(α)list(m) ∗ (α)list(n)→ (α)list(m+ n).

λm.λn.lam l.
case l of 〈nil, ys〉 ⇒ ys

| 〈cons(〈x, xs〉), ys〉 ⇒ rev(〈xs, cons(〈x, ys〉)〉)
in rev(〈l, nil〉) end

Another kind of type annotation is essentially like the type annotation in ML except that <|
is used instead of : and a dependent type is supplied. For instance, the type annotation in the
following code, extracted from the example in Section A.5, captures the relation between front
and srcalign.

fun{srcalign:int}
aligned(src, srcpos, endsrc, dest, destpos, srcalign, bytes) =

let
val front =

(case srcalign of
0 => 0

| 1 => 3
| 2 => 2
| 3 => 1) <| [i:nat |

(srcalign = 0 /\ i = 0) \/
(srcalign = 1 /\ i = 3) \/
(srcalign = 2 /\ i = 2) \/
(srcalign = 3 /\ i = 1)] int(i)

8.4. PROGRAM TRANSFORMATION 139

...
in

...
end

We list as follows some less common syntax in the implementation and its corresponding part in
ML∀,Π,Σ0,exc,ref(C), helping the reader to understand examples.

implementation ML∀,Π,Σ0,exc,ref(C)
e <| τ e : τ
P1 /\ P2 P1 ∧ P2

P1 \/ P2 P1 ∨ P2

{a1 : γ1, . . . , an : γn} ∀a1 : γ1 . . .∀an : γn.
{a1 : γ1, . . . , an : γn | P} ∀a1 : γ1 . . .∀an : {a : γn | P [an 7→ a]}.
[a1 : γ1, . . . , an : γn] ∃a1 : γ1 . . .∃an : γn.
[a1 : γ1, . . . , an : γn | P] ∃a1 : γ1 . . .∃an : {a : γn | P [an 7→ a]}.

8.4 Program Transformation

There is a significant issue on whether a variant of A-normal transform should be performed on
programs before they are elaborated. The advantage of doing the transform is that a common form
of expressions are then able to be elaborated which would otherwise not be possible. However, the
transform also prevents us from elaborating a less common form of expressions. This drawback,
however, can be largely remedied by define e1(e2) as follows.

e1(e2) =

{
let x1 = e1 in x1(e2) end if e2 is a value;
let x1 = e1 in let x2 = e2 in x1(x2) end end otherwise.

A more serious disadvantage of performing the transform is that it can significantly complicate for
the programmer the issue of understanding the error messages reported during elaboration since
he or she may have to understand how the programs are transformed.

The transform is performed in the current prototype implementation. Since little attention is
paid to reporting error messages in this implementation, the issue has yet to be addressed in future
implementations. We would also like to study the feasibility of allowing the programmer to guide
the transform with some syntax.

8.5 Indeterminacy in Elaboration

The constraint generation rules for coercion as presented in Figure 5.2 contain a certain amount of
indeterminacy. Since we disallow backtracking in elaboration for the sake of practicality, we have
imposed the following precedence on the application of these rules, that is, the rule with a higher
precedence is chosen over the other if both of them are applicable.

(coerce-pi-r) > (coerce-sig-l) > (coerce-pi-l) > (coerce-sig-r)

140 CHAPTER 8. IMPLEMENTATION

Given φ ` τ : ∗ derivable, the above strategy guarantees that φ [̀·] coerce(τ, τ)⇒ Φ is derivable
for some Φ such that φ |= Φ is derivable. However, the programmer must use language constructs to
guide coercion, sometimes. For instance, given a function f of type τ1 = Πa : γ.δ(a)→ δ(i), one can
define g as lam x.let y = x in f(y) end and assign it the type τ2 = (Σa : γ.δ(a))→ (Σa : γ.δ(a)).
This type-checks. Notice that it could not have succeeded with the precedence above if we had
coerced τ1 into τ2 directly.

Similarly, the rule (constr-pi-intro-1) is always chosen over (constr-pi-intro-2) if both are
applicable. There is yet another issue. Suppose that we have synthesized the type τ of an expression
e for τ = Πa : γ.τ1. Clearly, the rule (constr-pi-elim) is applicable now. Should we apply the
rule? In the implementation, we apply the rule only if e occurs as a subexpression of e(e′) or
case e of ms.

This pretty much summarizes how indeterminacy in elaboration is dealt with in the prototype
implementation.

8.6 Summary

We have finished a prototype implementation in which there are features such as datatype decla-
rations, higher-order functions, let-polymorphism, references, exceptions, and both universal and
existential dependent types. The only missing main feature in the core of ML is records, which can
be regarded as a variant of product. The implementation sticks tightly to the theory developed in
the previous chapters.

In the implementation of the elaboration described in Section 5.2, we have to cope with some
indeterminacy in the constraint generation rules for elaboration and coercion. The important
decision we adopt is that we disallow the use of backtracking in type-checking. The main reason
for this decision is that backtracking can not only significantly slow down type-checking but also
make it almost impossible to report type-error messages in an acceptable manner. We are now
ready to harvest the fruit of our hard labor, mentioning some interesting applications of dependent
types in the next chapter.

Chapter 9

Applications

In this chapter, we present some concrete examples to demonstrate various applications of depen-
dent types in practical programming. All the examples in Section 9.1 and Section 9.2 have been
verified in the prototype implementation. The ones in Section 9.3 are for the future research.

9.1 Program Error Detection

It was our original motivation to use dependent types to capture more programming errors at
compile-time. We report some rather common errors which can be captured with the dependent
type system developed in this thesis. Notice that all these errors slip through the type system of
ML.

We have found that it is significantly beneficial for the programmer to be able to verify certain
properties about the lengths of lists in programs. For instance, the following is an implementation
of the quicksort algorithm on lists.

fun(’a)
quickSort cmp [] = []

| quickSort cmp (x::xs) = par cmp (x, [], [], xs)
where quickSort <|
{n:nat} (’a * ’a -> bool) -> ’a list(n) -> ’a list(n)

and(’a)
par cmp (x, left, right, xs) =
case xs of

[] => (quickSort cmp left) @ (x :: (quickSort cmp right))
| y::ys =>

if cmp(y, x) then par cmp (x, y::left, right, ys)
else par cmp (x, left, y::right, ys)

where par <| {p:nat,q:nat,r:nat} (’a * ’a -> bool) ->
’a * ’a list(p) * ’a list(q) * ’a list(r) -> ’a list(p+q+r+1)

If the line below case is replaced with the following,

[] => (quickSort cmp left) @ (quickSort cmp right)

141

142 CHAPTER 9. APPLICATIONS

datatype ’a dict =
Empty (* considered black *)

| Black of ’a entry * ’a dict * ’a dict
| Red of ’a entry * ’a dict * ’a dict

typeref ’a dict of bool * nat with
Empty <| ’a dict(true, 0)

| Black <|
{cl:bool, cr:bool, bh:nat}
’a entry * ’a dict(cl, bh) * ’a dict(cr, bh) -> ’a dict(true, bh+1)

| Red <|
{bh:nat}
’a entry * ’a dict(true, bh) * ’a dict(true, bh) -> ’a dict(false, bh)

Figure 9.1: The red/black tree data structure

that is, the programmer forgot to include x in the result returned by the function par, then the
function could not be of the following type.

{p:nat,q:nat,r:nat} (’a * ’a -> bool) ->
’a * ’a list(p) * ’a list(q) * ’a list(r) -> ’a list(p+q+r+1)

As matter of a fact, the function par is of the following type after the replacement.

{p:nat,q:nat,r:nat} (’a * ’a -> bool) ->
’a * ’a list(p) * ’a list(q) * ’a list(r) -> ’a list(0)

Therefore, the above error is caught at compile-time when type-checking is performed.
We now present a more realistic example. A red/black tree is a balanced binary tree which

satisfies the following conditions.

1. All leaves are marked black and all other nodes are marked either red or black.

2. Given a node in the tree, there are the same number of black nodes on every path connecting
the node to a leaf. This number is called the black height of the node.

3. The two sons of every red node are black.

In Figure 9.1, we define a polymorphic datatype ’a dict, which is essentially a binary tree
with colored nodes. We then refine the datatype with type index objects (c, bh) drawn from the
sort bool ∗ nat, where c and bh are the color and the black height of the root of the binary tree.
The node is black if and only if c is true. Therefore, the properties of a red/black tree is naturally
captured with this datatype refinement. This enables the programmer to catch program errors
which lead to violations of these properties when implementing an insertion or deletion operation
on red/black trees. We have indeed encountered errors caught in this way in practice.

Notice that this refinement is different from the one declared in Section A.2, which is more
suited for the implementation presented there.

9.2. ARRAY BOUND CHECK ELIMINATION 143

9.2 Array Bound Check Elimination

Array bounds checking refers to determining whether the value of an expression is within the
bounds of an array when it is used to index the array. Bounds violations, such as those notorious
“off-by-one” errors, are among the most common programming errors.

• Pascal, Ada, SML, Java are among the programming languages which require that all bounds
violations be captured.

• C, C++ are not.

However, run-time array bounds checking can be very expensive. For instance, it is observed
that FoxNet written in SML (Buhler 1995) suffers up to 30% loss of throughput due to checksum
operation, which is largely composed of run-time array bound checks. The SPIN kernel written in
Modula-3 (Bershad, Savage, Pardyak, Sirer, Becker, Fiuczynski, Chambers, and Eggers 1995) also
suffers some significant performance losses from run-time array bounds checking. The traditional
ad hoc approaches to eliminating run-time array bound checks are based on flow analysis (Gupta
1994; Kolte and Wolfe 1995). A significant advantage of these approaches is that they can be
made fully automatic, requiring no programmer supplied annotations. On the other hand, these
approaches in general have very limited power. For instance, they cannot eliminate array bound
checks involved with an array index whose value is not monotonic during the execution. Also
they all rely on whole program analysis, having some fundamental difficulty crossing over module
boundaries. Another serious criticism of these approaches is that they in general do not provide
the programmer with feedback on why some array bound checks cannot be eliminated (if there are
still some left after the flow analysis). In other words, these approaches, though may enhances the
performance of the programs, cannot lead to more robust programs. Therefore, they offer virtually
no software engineering benefits.

In this section, we show that dependent types can facilitate the elimination of run-time array
bound checks. Our approach requires that the programmer supply type annotations in the code.
In return, it is much more powerful than traditional approaches. For instance, we will show how
to completely eliminate array bound checks in a binary search function, which seems beyond the
reach of any practical approach based on flow analysis. In addition, our approach can provide
the programmer with the feedback on why certain array bound checks cannot be eliminated.
This enhances not only the performance of the programs but also their robustness. Therefore,
our approach offers some software engineering benefits. Since our approach is orthogonal to the
traditional ones, it seems straightforward to adopt our approach at type-checking stage and then
use one based on flow analysis at code generation stage, combining the benefits of dependent types
and flow analysis together.

In the standard basis we have refined the types of many common functions on integers such as
addition, subtraction, multiplication, division, and the modulo operation. Please refer to Figure 8.1
in Chapter 8 for more details.

In order to eliminate array bound checks at compile-time, we assume that the array operations
sub and update have been assigned the following types.

sub <| {n:nat} {i:nat | i < n} ’a array(n) * int(i) -> ’a
update <| {n:nat} {i:nat | i < n} ’a array(n) * int(i) * ’a -> unit

144 CHAPTER 9. APPLICATIONS

fun{size:nat}
dotprod(v1, v2) =

let
fun loop(i, n, sum) =

if i = n then sum
else loop(i+1, n, sum + sub(v1, i) * sub(v2, i))

where loop <| {i:nat | i <= size} int(i) * int(size) * int -> int
in

loop(0, length v1, 0)
end

where dotprod <| int array(size) * int array(size) -> int

Figure 9.2: The dot product function

Clearly, we are sure that the array accesses through sub or update cannot result in array bound
violations, and therefore there is no need for inserting array bound checks when we compile the
code.

Similarly, we can assign nth the following type, where nth, when given a list and a nonnegative
integer i, returns the ith element in the list.

sub <| {n:nat} {i:nat | i < n} ’a list(n) * int(i) -> ’a

This can eliminate list tag checks in the implementation of nth.
The code in Figure 9.2 is an implementation of the dot product function. We use {n:nat} as an

explicit universal quantifier or dependent function type constructor. Conditions may be attached,
so they can be used to describe certain forms of subset types, such as {n:nat | i < n} in the types
of sub and update. The two “where” clauses are present in the code for type-checking purposes,
giving the dependent type of the local tail-recursive function loop and the function dotprod itself.

This could be a simple example for some approaches based on flow analysis since the index i
in the code is always increasing. Now let us see an example which is challenging for approaches
based on flow analysis. The code in Figure 1.3 is an implementation of binary search on an array.
We have listed in Figure 3.4 some sample constraints generated from type-checking the code. All
of these can be solved easily.

Note that if we program binary search in C, the array bound check cannot be hoisted out of
loops using the algorithm presented in (Gupta 1994) since it is neither increasing nor decreasing in
terms of the definition given there. On the other hand, the method in (Susuki and Ishihata 1977)
could eliminate this array bound check by synthesizing an induction hypothesis similar to our
annotated type for look. Unfortunately, synthesizing induction hypotheses is often prohibitively
expensive in practice. In future work we plan to investigate extensions of the type-checker which
could infer certain classes of generalizations, thereby relieving the programmer from the need for
certain kinds of “obvious” annotations.

9.2.1 Experiments

We have performed some experiments on a small set of programs. Note that three of them (bcopy,
binary search, and quicksort) were written by others and just annotated, providing evidence that

9.2. ARRAY BOUND CHECK ELIMINATION 145

constraints type annotations
Program number SML of NJ MLWorks total number total lines code size
bcopy 187 0.59/1.17 0.72/1.37 13 50 281 lines
binary search 13 0.07/0.02 0.10/0.04 2 2 33 lines
bubble sort 15 0.08/0.03 0.11/0.06 3 3 37 lines
matrix mult 18 0.10/0.04 0.16/0.06 5 10 50 lines
queen 18 0.11/0.03 0.14/0.04 9 9 81 lines
quick sort 135 0.29/0.58 0.37/0.68 16 40 200 lines
hanoi towers 29 0.10/0.09 0.13/0.13 4 10 45 lines
list access 4 0.07/0.01 0.08/0.01 2 3 18 lines

Table 9.1: Constraint generation/solution, time in secs

a natural ML programming style is amenable to our type refinements.
The first set of experiments were done on a Dec Alpha 3000/600 using SML of New Jersey

version 109.32. The second set of experiments were done on a Sun Sparc 20 using MLWorks
version 1.0. Sources of the programs can be found in (Xi 1997).

Table 9.1 summarizes some characteristics of the programs. We show that the number of
constraints generated during type-checking and the time taken for generating and solving them
using SML of New Jersey and MLWorks. Also we indicate the number of total type annotations
in the code, the number of lines they occupy, and the code size. Note that some of the type
annotations are already present in non-dependent form in ML, depending on programming style
and module interface to the code. A brief description of the programs is given below.

bcopy This is an optimized implementation of the byte copy function used in the Fox project.
We used this function to copy 1M bytes of data 10 times in a byte-by-byte style.

binary search This is the usual binary search function on an integer array. We used this function
to look for 220 randomly generated numbers in a randomly generated array of size 220.

bubble sort This is the usual bubble sort function on an integer array. We used this function to
sort a randomly generated array of size 213.

matrix mult This is a direct implementation of the matrix multiplication function on two-dimensional
integer arrays. We applied this function to two randomly generated arrays of size 256× 256.

queen This is a variant of the well-known eight queens problem which requires positioning eight
queens on a 8× 8 chessboard without one being captured by another. We used a chessboard
of size 12× 12 in our experiment.

quick sort This implementation of the quick sort algorithm on arrays is copied from the SML of
New Jersey library. We sorted a randomly generated integer array of size 220.

hanoi towers This is a variant of the original problem which requires moving 64 disks from one
pole to another without stacking a larger disk onto a smaller one given the availability of a
third pole. We used 24 disks in our experiments.

146 CHAPTER 9. APPLICATIONS

Program with checks without checks gain checks eliminated
bcopy 6.52 4.40 32% 20,971,520
binary search 40.40 30.10 25% 19,072,212
bubble sort 58.90 34.25 42% 134,429,940
matrix mult 30.62 16.79 45% 33,619,968
queen 15.85 11.06 30% 77,392,496
quick sort 29.85 25.32 15% 64,167,588
hanoi towers 11.34 8.28 27% 50,331,669
list access 2.24 1.24 45% 1,048,576

Table 9.2: Dec Alpha 3000/600 using SML of NJ working version 109.32, time unit = sec.

Program with checks without checks gain checks eliminated
bcopy 9.75 2.01 79% 20,971,520
binary search 31.78 25.00 21% 19,074,429
bubble sort 46.78 25.84 45% 134,654,868
matrix mult 60.43 51.27 15% 33,619,968
queen 29.81 14.81 50% 77,392,496
quick sort 79.95 70.28 12% 63,035,841
hanoi towers 9.59 7.20 25% 50,331,669
list access 1.58 0.77 51% 1,048,576

Table 9.3: Sun Sparc 20 using MLWorks version 1.0, time unit = sec.

list access We accessed the first sixteen elements in a randomly generated list at total of 220

times.

We used the standard, safe versions of sub and update for array access when compiling the pro-
grams into the code with array bound checks. These versions always perform run-time array bound
checks according to the semantics of Standard ML. We used unsafe versions of sub and update for
array access when generating the code containing no array bound checks. These functions can be
found in the structure Unsafe.Array (in SML of New Jersey), and in MLWorks.Internal.Value (in
MLWorks). Our unsafe version of the nth function used cast for list access without tag checking.

Notice that unsafe versions of sub, update and nth can be used in our implementation only if
they are assigned the corresponding types mentioned previously.

In Table 9.2 and Table 9.3, we present the effects of eliminating array bound checks and list tag
checks. Note that the difference between the number of eliminated array bound checks in Table 9.2
and Table 9.3 reflects the difference between randomly generated arrays used in two experiments.

We also present two diagrams in Figure 9.3 and Figure 9.4. The height of a bar stands for the
time spent on the experiment. The gray ones are for the experiments in which all array bound
checks are eliminated at compile-time and the dark ones for the others.

It is clear that the gain is significant in all cases, rewarding the work of writing type annotations.
In addition, type annotations can be very helpful for finding and fixing certain program errors, and

9.3. POTENTIAL APPLICATIONS 147

bcopy

binary
search

bubble sort

matrix
mult

queen

quicksort

hanoi
towers

list
access

light color: w/o run-time bounds checking dark color: w/ run-time bounds checking

Figure 9.3: Dec Alpha 3000/600 using SML of NJ working version 109.32

for maintaining a software system since they provide the user with informative documentation. We
feel that these factors yield a strong justification for our approach.

9.3 Potential Applications

In this section we present some potential applications of dependent types, which have yet to be
implemented. We also outline some approaches to realizing these applications. We refer the reader
to (Xi 1999) for further details regarding the subject on dead code elimination.

9.3.1 Dead Code Elimination

The following function zip zips two lists together. If the clause zip(_, _) = raise zipException
is missing, then some ML compiler will issue a warning message stating that zip may result in a
match exception to be raised. For instance, this happens if two arguments of zip are of different
lengths.

exception zipException
fun(’a, ’b)

zip(nil, nil) = nil
| zip(cons(x, xs), cons(y, ys)) = cons((x,y), zip(xs, ys))
| zip(_, _) = raise zipException

However, this function is meant to zip two lists of equal length. If we declare that zip is of the
following dependent type,

{n:nat} ’a list(n) * ’b list(n) -> (’a * b’) list(n)

148 CHAPTER 9. APPLICATIONS

bcopy

binary
search

bubble
sort

matrix
mult

queen

quicksort

hanoi
towers

list
access

light color: w/o run-time bounds checking dark color: w/ run-time bounds checking

Figure 9.4: Sun Sparc 20 using MLWorks version 1.0

then the clause zip(_, _) = raise zipException in the definition of zip can never be reached,
and therefore can be safely removed. In other words, we can declare the function zip as follows.

fun(’a, ’b)
zip(nil, nil) = nil

| zip(cons(x, xs), cons(y, ys)) = cons((x,y), zip(xs, ys))
where {n:nat} ’a list(n) * ’b list(n) -> (’a * b’) list(n)

This leads to not only more compact but also possibly more efficient code. For instance, if it
has been checked that the first argument of zip is nil, then it can return the result nil immediately
since it is redundant to check whether the second argument is nil (it must be).

We now prove a lemma, which provides the key to eliminating redundant matching clauses.

Lemma 9.3.1 Given a pattern p and a type τ in MLΠ,Σ
0 (C) such that p ↓ τ � (φ; Γ) is derivable.

If ·; · ` v : τ and match(v, p) ` θ are derivable, then φ |= ⊥ is not satisfiable. In other words, if
φ |= ⊥ is derivable, then there is no closed value of type τ which can match the pattern p.

Proof If φ |= ⊥ is satisfiable, then (φ)⊥ holds in the constraint domain C. It can be readily
verified that a counterexample to (φ)⊥ can be given if we let a be θ(a) for all a ∈ dom(φ). If
φ |= ⊥ is derivable, then φ |= ⊥ is satisfiable by definition. Therefore, there is no closed value v of
type τ which matches the pattern p if φ |= ⊥ is derivable.

9.3. POTENTIAL APPLICATIONS 149

Let us call an index variable context φ inconsistent if φ |= ⊥ is satisfiable. Lemma 9.3.1 simply
implies that no closed value of type τ can match a pattern p if checking p against τ yields an
inconsistent index variable context.

Therefore, when the following rule is applied during elaboration,

p ↓ τ1 ⇒ (p∗;φ1; Γ1) φ, φψ1 ; Γ,Γ1 ` e ↓ τ2 ⇒[ψ] Φ
φ, ψ ` τ1 ⇒ τ2 : ∗ φ, ψ ` Γ[ctx]

φ; Γ ` (p⇒ e) ↓ (τ1 ⇒ τ2)⇒[ψ] ∀(φψ1).Φ
(constr-match)

we verify whether φ, φψ1 |= ⊥ is derivable. If it is, then the matching clause p ⇒ e can never be
reached. We can either issue a warning message at this point or safely remove the matching clause.

However, there is a serious issue which must be dealt with before we can apply this strategy to
pattern matching in ML. The operational semantics of ML requires that pattern matching be done
sequentially. For instance, if the third clause zip(,) in the first declaration of zip is chosen to eval-
uate zip(v), then v must not match either pattern (nil, nil) or (cons(x, xs), cons(y, ys)). Therefore,
v matches either pattern (cons(x, xs), nil) or (nil, cons(y, ys)). If v is of type (α)list(n)∗(β)list(n)
for some n, this is clearly impossible. This example suggests that we transform overlapped match-
ing clauses into disjoint ones before detecting whether some of them are redundant. In the above
case, this amounts to transforming the first declaration of zip into the following one.

exception zipException
fun(’a, ’b)

zip(nil, nil) = nil
| zip(cons(x, xs), cons(y, ys)) = cons((x,y), zip(xs, ys))
| zip(nil, cons(y, ys)) = raise zipException
| zip(cons(x, xs), nil) = raise zipException

Let us assign zip the type Λα.Λβ.Πn : nat.(α)list(n) ∗ (β)list(n)→ (α ∗ β)list(n). Notice that we
have

(nil, cons(y, ys)) ↓ (α)list(n) ∗ (β)list(n) � (0 .= n, a : nat, a+ 1 .= n; y : β, ys : (β)list(a))

Since n : nat, 0 .= n, a : nat, a + 1 .= n |= ⊥ is derivable, the third clause is redundant by
Lemma 9.3.1. Similarly, the fourth clause is also unreachable.

This approach seems to be straightforward, but it can lead to code size explosion when applied
to certain examples. Therefore, we are still in search of a better solution to detecting unreachable
matching clauses.

9.3.2 Loop Unrolling

In this subsection we present another potential application of dependent types, following some ob-
servation in Subsection 9.3.1. The following declared function sumArray sums up all the elements
in a given integer array.

fun{n:nat}
sumArray(arr) =

let

150 CHAPTER 9. APPLICATIONS

fun loop(i, n, s) = if i = n then s else loop(i+1, n, sub(arr, i)+s)
where loop <| {i:nat | i <= n} int(i) * int(n) * int -> int

in
loop(0, length(arr), 0)

end
where sumArray <| int array(n) -> int

Note that if i = n then s else loop(i+1, n, sub(arr, i)+s) is a variant of the following
case statement.

case i = n of true => s | false => loop(i+1, n, sub(arr, i)+s)

We now declare another function sumArray8 as follows, that is, sumArray8 can only be applied
to an integer array of size 8.

fun sumArray8(arr) = sumArray(arr)
where sumArray <| int array(8) -> int

Then it seems reasonable that we can expand the declaration to the following through partial
evaluation. We give some informal explanation.

fun sumArray8(arr) =
sub(arr, 7) + (sub(arr, 6) + (sub(arr, 5) + (sub(arr, 4)
(sub(arr, 3) + (sub(arr, 2) + (sub(arr, 1) + (sub(arr, 0) + 0)))))))

where sumArray <| int array(8) -> int

If arr is of type (int)array(8), then length(arr) is of type int(8) since length is given the
type Λα.Πn : nat.(α)array(n) → int(n). After expanding loop(0, length(arr), 0) to let n =
length(arr) in loop(0, n, 0) end (this is a call-by-value language!), the type of n must be int(8).
We now expand loop(0, n, 0) to

case 0 = n of true⇒ 0 | false⇒ loop(0 + 1, n, sub(arr, 0) + 0)

Notice that the type of 0 = n is bool(0 = 8) since = is of the following type.

Πm : int.Πn : int.int(m) ∗ int(n)→ bool(m = n)

Therefore, according to the reasoning in Section 9.3.1, the matching clause true⇒ 0 is unreachable.
This allows the simplification of the above case statement to loop(0 + 1, n, sub(arr, 0) + 0). By
repeating this process eight times, we reach the expanded declaration of sumArray8. This can
lead to more efficient code without sacrificing clarity.

However, if the size of an integer array arr is a large natural number, it may not be advantageous
to expand sumArray(arr) since this can result in unexpected instruction cache behavior and thus
slow down the code execution. We propose a possible solution as follows.

A significant problem with currently available programming languages is that there exist few
approaches to improving the efficiency of code without overhauling the entire code. With the help
of partial evaluation, this situation can be somewhat ameliorated as follows. We assume that the
programmer decides to write the function sumArray_unroll in Figure 9.5 to replace sumArray
for the sake of efficiency. Though much more involved than the example about sumArray8, we
expect that loop_8_times can specialize to the following function with partial evaluation.

9.3. POTENTIAL APPLICATIONS 151

fun{n:nat}
sumArray_unroll(arr) =

let
fun loop(i, n, s) = if i = n then s else loop(i+1, n, sub(arr, i)+s)
where loop <| {i:nat | i <= n} int(i) * int(n) -> int

fun loop_8_times(i, n, s) = loop(i, n, s)
where loop_8_times <|
{i:nat | i <= n /\ n mod 8 = 0} int(i) * int(n) -> int

in
let

val n = length(arr)
and r = n % 8

in
loop(n-r, n, loop_8_times(0, n-r, 0))

end
end

where sumArray_unroll <| int array(n) -> int

Figure 9.5: loop unrolling for sumArray

fun loop_8_times(i, n, s) =
if i = n then s
else loop_8_times(i+8, n,

sub(arr, i+7)+(sub(arr, i+6)+
(sub(arr, i+5)+(sub(arr, i+4)+
(sub(arr, i+3)+(sub(arr, i+2)+
(sub(arr, i+1)+s)))))))

where loop_8_times <| {i:nat | i <= n /\ n mod 8 = 0} int(i) * int(n) -> int

This roughly corresponds to loop-unrolling, a well-known technique in compiler optimization.
Though we have not shown that loop unrolling done above preserves the operational semantics, we
think that this is a straightforward matter. Now it seems reasonable to gain some performance by
expanding sumArray_unroll(arr) for arr of large known size. The interested reader is referred to
(Draves 1997) for some realistic and interesting examples which may be handled in this way.

Combining dependent types with partial evaluation, we hope to find an approach to improving
the efficiency of existing code with only moderate amount of modification. This is currently an
exciting but highly speculative research direction.

9.3.3 Dependently Typed Assembly Language

The studies on the use of types in compilation have been highly active recently. For instance, the
work in (Morrisett 1995; Tarditi, Morrisett, Cheng, Stone, Harper, and Lee 1996; Tolmach and
Oliva 1998; Morrisett, Walker, Crary, and Glew 1998) has demonstrated convincing evidence to
support the use of typed intermediate and assembly languages for various purposes such as data

152 CHAPTER 9. APPLICATIONS

int dotprod(int A[], int B[], int n) {
int i, sum;
sum = 0;
for(i = 0; i < n; i++) { sum += A[i] * B[i]; }
return sum;

}

Figure 9.6: The C version of dotprod function

layout, tag-free garbage collection, compiler error detection, etc. This immediately indicates that
it would be beneficial if we could pass dependent types to lower level languages during compilation.
Many compiler optimizations involving code motion may then benefit from the use of dependent
types. Array bound check elimination through dependent types in Section 9.2 is a solid support of
this argument.

We have started to formulate a dependently typed assembly language, which is mainly inspired
by (Morrisett, Walker, Crary, and Glew 1998). The theory of this language is yet to be developed.
We now use an example to informally present some ideas behind this research. The following code
in Figure 9.6 is an implementation of dot product function in C. It is written in this way so
that it can be directly compared with the code in Figure 9.7, which is an implementation of dot
product function in DTAL, a dependently typed assembly language. Note that “\\” starts a line
of comment.

In DTAL, each label is associated with a type. For instance, the label dotprod is associated
with the following type.

{n: nat} [r0: int array(n), r1: int array(n), r3: int(n)]

Roughly speaking, this type means that when the execution of the code reaches the label dotprod,
the registers r0 and r1 must point to integer arrays of size n for some natural number n and r3
stores an integer equal to n.

The DTAL code has been type-checked in a prototype implementation. Notice that the type
system guarantees that there is no memory violation when the command load r4, r0(r2) is
executed since the value in r2 is a natural number less than the size of the array to which r0
points. Therefore, if the code is downloaded from an untrusted source and type-checked locally,
no run-time checks are needed for preventing possible memory violations. This opens an exciting
avenue to eliminating array bound checks for programming languages such as Java, which run on
networks. More examples of DTAL code can be found in (Xi 1998).

9.4 Summary

We have so far presented some applications of dependent types. The uses of dependent types in
program error detection and array bound check elimination have been put into practice. Though
it seems relatively straightforward to use dependent types for eliminating unreachable matching
clauses or issuing more accurate warning messages about inexhausitive pattern matching, but this
is yet to be implemented. Also we have speculated that it could be beneficial to combine partial

9.4. SUMMARY 153

dotprod:{n: nat} \\ n is universally quantified
[r0: int array(n), r1: int array(n), r3: int(n)]
\\ r0 and r1 point to integer arrays A and B of size n, respectively
\\ and n is stored in r3

mov r31, 0 \\ set r31 to 0
mov r2, 0 \\ set r2 to
jmp loop \\ start the loop

loop: {n:nat, i:int | 0 <= i <= n}
\\ n and i are universally quantified and 0 <= i <= n

[r0: int array(n), r1: int array(n), r2:int(i), r3: int(n), r31: int]
\\ r2 = i and r3 = n

cmp r2, r3 \\ compare r2 and r3
ifnz \\ r2 is not equal to r3

load r4, r0(r2) \\ load A[i] into r4
load r5, r1(r2) \\ load B[i] into r5
mul r4, r4, r5 \\ r4 = r4 * r5
add r31, r31, r4 \\ r31 = r31 + r4
add r2, r2, 1 \\ increase r2 by 1
jmp loop \\ repeat the loop

else \\ r2 is equal to n
jmp finish \\ done

endif

finish: [r31: int] \\ r31 stores the result, which is an integer
halt

Figure 9.7: The DTAL version of dotprod function

154 CHAPTER 9. APPLICATIONS

evaluation with dependent types, demonstrating informally that loop-unrolling may be controlled
by the programmer with dependent types.

It is both promising and highly desirable to spot more concrete opportunities in compiler
optimization which could benefit from dependent types.

Chapter 10

Conclusion and Future Work

The dependent type inference developed in this thesis has demonstrated convincing signs of being
a viable system for practical use. Compared to ML-types, dependent types can more accurately
capture program invariants and therefore lead to detecting more program errors at compile-time.
Also, the use of dependent types in array bound check elimination is encouraging since this can
enhance not only the robustness but also the efficiency of programs.

As with any programming language, DML has many weak points. Some of the weak points
result from the trade-offs made to ensure the practicality of dependent type inference, and some can
be remedied through further experiment and research. In this chapter we summarize the current
research status on incorporating dependent types into ML and point out some directions to pursue
in the future to make DML a better programming language.

10.1 Current Status

We briefly mention the current status of DML in terms of both language design and language
implementation.

10.1.1 Language Design

We have so far finished extending the core of ML with a notion of dependent types, that is,
combining dependent types with language features such as datatype declarations, higher-order
functions, let-polymorphism, references and exceptions. The extended language is given the name
DML (for Dependent ML). Strictly speaking, DML is really a language parameterized over a given
constraint domain C and thus should be denoted by DML(C). We may omit writing the constraint
domain C in the following presentation, and if we do so then we mean that the omitted C is the
integer constraint domain presented in Section 3.3, or C is simply irrelevant.

We have proven the soundness of the enriched type system and then constructed a practical
type-checking algorithm for it. Furthermore, the correctness of the type-checking algorithm is also
established. This has placed our work on a solid theoretical foundation.

DML is a conservative extension of ML in the sense that a DML program which uses no
dependent types is simply a valid ML program. In order to make DML fully compatible with the
core of ML, we designed a two-phase type-checking algorithm for DML. This guarantees that an
ML program (written in some external language for ML) can always pass type-checking for DML

155

156 CHAPTER 10. CONCLUSION AND FUTURE WORK

if it passes the type-checking for ML. Therefore, the programmer can use sparingly the features
related to dependent types when writing (large) programs.

10.1.2 Language Implementation

We have finished a prototype implementation of a type-checker for a substantial part of DML(C),
where C is the integer constraint domain in Section 3.3. This part roughly corresponds to the lan-
guage ML∀,Π,Σ0,exc,ref(C) introduced in Section 7.4, including most features in the core of ML such as
higher-order functions, datatypes, let-polymorphism, references and exceptions. However, records
have yet to be implemented. It should be straightforward to include records in a future implemen-
tation since they are simply a variant of products. All examples in Chapter A have been verified
in this implementation.

The constraint solver for the integer domain is based on a variant of the Fourier-Motzkin
variable elimination approach (Dantzig and Eaves 1973). This is an intuitive and clean approach,
which we think is more promising than those based on SUP-INF or the simplex method to report
comprehensible and accurate type error or warning messages on unsatisfiable constraints, a vital
component for type-checking in DML(C). The weak aspect of this approach is that it seems less
promising to handle large contraints than the Simplex method, but this issue needs to be further
investigated.

10.2 Future Research in Language Design

In this section, we present some future research directions for improving DML.

10.2.1 Modules

Since we have finished adding dependent types to the core of ML, namely, ML without module
level constructs, the next move is naturally to study the interaction between the module system
of ML and dependent types. There are many intricate issues which can only be answered in
practice. An immediate question is how to export dependent types in signature. Since there is
no notion of principal types in DML, a function can be assigned two dependent types neither of
which coerces into the other. For instance, the following declared function tail can be assigned
types ∀α.(Σn : nat.(α)list(n))→ Σn : nat.(α)list(n) and ∀α.Πn : nat.(α)list(n+ 1)→ (α)list(n),
respectively.

fun tail(cons(x, xs)) = x

The second type cannot be coerced into the first one since a function of the first type can be applied
to any list while a function of the second type can only be applied to a non-empty list. If the length
of a list l cannot be inferred from static type-checking, then only the first assigned type can be
used if we need to type-check tail(l). However, if l is inferred to be not empty at compile-time,
the use of the second type can lead to potentially more efficient code as explained in Section 9.3.1.
At this moment, we contemplate introducing a notion of top-level conjunction types into DML. In
the above case, we would like to assign tail the following conjunction types

(∀α.(Σn : nat.(α)list(n))→ Σn : nat.(α)list(n)) ∧ (∀α.Πn : nat.(α)list(n+ 1)→ (α)list(n))

10.2. FUTURE RESEARCH IN LANGUAGE DESIGN 157

Then the programmer is allowed to choose which type is needed for an occurrence of tail. There
are yet many details to be filled in and some experience to be gained on this issue.

10.2.2 Combination of Different Refinements

We currently require that a datatype be refined at most once. However, there are also cases where
a datatype may need different refinements for different purposes. For instance, we encountered
a case where we needed to refine the datatype ((α)list)list with a pair of index objects (i, j) to
represent the length of a list of lists and the sum of the lengths of the lists in this list of lists. It
is not clear how this refinement could be done since the datatype (α)list has already been refined
with an index which stands for the length of a list. Instead, we declared the following datatype,
refined it and then substituted it for ((α)list)list.

datatype ’a listlist = Nil | Cons of ’a list * ’a listlist
typeref ’a listlist of nat * nat
with Nil <| ’a listlist(0,0)

| Cons <| {l:nat,m:nat,n:nat}
’a list(l) * ’a listlist(m,n) -> ’a listlist(m+1,n+l)

This resulted in substituting Nil and Cons for nil and cons in many places of a program, respec-
tively. More details can be found in the example on merge sort presented in Section A.4. It is a
future research topic to study how to combine several different refinements of a datatype.

10.2.3 Constraint Domains

The general constraint language in Section 3.1 allows the programmer to declare the constraint
domain C over which the language DML(C) is parameterized. Then, by Theorem 5.2.7, the type-
checking in DML(C) can be reduced to constraint satisfaction in C. Unfortunately, there is no
method available to enable the programmer to supply a constraint solver for C.

Therefore, it is highly desirable to provide the programmer with a language in which a constraint
solver can be written. A programmer-supplied constraint solver for constraint domain C can then
be combined with elaboration so that type-checking for DML(C) can be performed.

10.2.4 Other Programming Languages

Another research direction is to apply the language design approach in this thesis to other (strongly
typed) programming languages such as Haskell(Peyton Jones et al. 1999) and Java(Sun Microsys-
tems 1995). Array bound check elimination in Java, however, requires some special care, as we
explain now. A program in Java is often compiled into Java Virtual Machine Language (JVML)
code and shipped through networks. Since JVML code can be downloaded by a local host which
does not trust the source of the code, there must be some evidence attached to the code in order
to convince the local host that it is safe to eliminate array bound checks in the code. An approach
presented in (Necula 1997) is to make the code carry a proof of certain properties of the code
which can be verified by the local host, leading to the notion of proof-carrying code. In practice,
the proof carried by code may tend to be difficult to construct and large when compared to the size
of the code. Another approach, following (Morrisett, Walker, Crary, and Glew 1998), is to make
the compiled code explicitly typed with dependent types so that code properties can be verified

158 CHAPTER 10. CONCLUSION AND FUTURE WORK

by the local host equipped with a type-checker for dependent types. This leads to the notion of
dependently typed assembly language.

10.2.5 Denotational Semantics

We are also interested in constructing a categorical model for the language MLΠ,Σ
0 (C). Various

denotational models based on the notion of locally closed cartesian categories have already been
constructed for λ-calculi with fully dependent type systems such as the one which underlies LF
(Harper, Honsell, and Plotkin 1993). However, MLΠ,Σ

0 (C) is essentially different from these λ-
calculi because of the separation between type index objects and language expressions. We expect
that a model tailored for MLΠ,Σ

0 (C) would yield some semantic explanation on index erasure, which
simply cannot exist in a fully dependent type setting.

10.3 Future Implementations

The present prototype implementation exhibits many aspects for immediate improvement. For
instance, we have observed that a large percentage of the constraints can be solved immediately
after their generation. However, we currently collect all constraints generated during elaboration
in a constraint store before we call a constraint solver. This practice often leads to inflating the
number of constraints significantly at the stage where all constraints are transformed into some
standard form. Therefore, it seems promising that elaboration can be done much more efficiently
if we intertwine constraint generation with constraint solution.

Another observation is that an overwhelming majority of integer constraints generated during
elaboration are trivial and can be solved with a constraint solver which is highly efficient but
incomplete, such as a constraint solver based the simplex method for real numbers. After filtering
out the trivial constraints, we can then use a complete constraint solver such as the one mentioned
in (Pugh and Wonnacott 1992) to solve the rest of constraints. A similar strategy has been adopted
in the constraint logic programming community for efficiently solving constraints.

A certifying compiler for Safe C, a programming language with similar constructs to part of C,
is presented in (Necula and Lee 1998). At this stage, the compiler largely relies on synthesizing loop
invariants in code in order to verify certain properties such as memory integrity. This approach,
however, seems difficult to cope with large programs. On the other hand, the type system of DML
is strong enough for allowing the programmer to supply loop invariants through type annotations.
This gives DML a significant advantage when the scalability issue is concerned. Therefore, it is
natural to consider whether a certifying compiler for DML can be implemented in the future.

Appendix A

DML Code Examples

A.1 Knuth-Morris-Pratt String Matching

The following is an implementation of the Knuth-Morris-Pratt string matching algorithm using
dependent types to eliminate most array bound checks.

structure KMP =
struct

assert length <| {n:nat} ’a array(n) -> int(n)

and sub <| (* sub requires NO bound checking *)
{size:int, i:int | 0 <= i < size} ’a array(size) * int(i) -> ’a

and subCK <| (* subCK requires bound checking *)
’a array * int -> ’a

(* notice the use of existential types *)
type intPrefix = [i:int| 0 <= i+1] int(i)

assert arrayPrefix <|
{size:nat} int(size) * intPrefix -> intPrefix array(size)

and subPrefix <| (* subPrefix requires NO bound checking *)
{size:int, i:int | 0 <= i < size}
intPrefix array(size) * int(i) -> intPrefix

and subPrefixCK <| (* subPrefixCK requires bound checking *)
intPrefix array * int -> intPrefix

and updatePrefix <| (* updatePrefix requires NO bound checking *)
{size:int, i:int | 0 <= i < size}
intPrefix array(size) * int(i) * intPrefix -> unit

159

160 APPENDIX A. DML CODE EXAMPLES

(*
* computePrefixFunction generates the prefix function
* table for the pattern pat
*)
fun computePrefixFunction(pat) =

let
val plen = length(pat)
val prefixArray = arrayPrefix(plen, ~1)

fun loop(i, j) = (* calculate the prefix array *)
if (j >= plen) then ()
else

if sub(pat, j) <> subCK(pat, i+1) then
if (i >= 0) then loop(subPrefixCK(prefixArray, i), j)
else loop(~1, j+1)

else (updatePrefix(prefixArray, j, i+1);
loop(subPrefix(prefixArray, j), j+1))

where loop <| {j:nat} intPrefix * int(j) -> unit
in

(loop(~1, 1); prefixArray)
end

where computePrefixFunction <| {p:nat} int array(p) -> intPrefix array(p)

fun kmpMatch(str, pat) =
let

val strLen = length(str)
and patLen = length(pat)

val prefixArray = computePrefixFunction(pat)
fun loop(s, p) =

if s < strLen then
if p < patLen then

if sub(str, s) = sub(pat, p) then loop(s+1, p+1)
else

if (p = 0) then loop(s+1, p)
else loop(s, subPrefix(prefixArray, p-1)+1)

else (s - patLen)
else ~1

where loop <| {s:nat, p:nat} int(s) * int(p) -> int
in

loop(0, 0)
end

where kmpMatch <| {s:nat, p:nat} int array(s) * int array(p) -> int
end

A.2. RED/BLACK TREE 161

A.2 Red/Black Tree

(*
* This example shows that the insert operation maps a balanced
* red/black tree into a balanced one. Also it increases the size
* of the tree by at most one (note that the inserted key may have
* already existed in the tree). There 8 type annotations occupying
* about 20 lines.
*)

structure RedBlackTree =
struct

type key = int
type answer = key option
type ’a entry = int * ’a

datatype order = LESS | EQUAL | GREATER
datatype ’a dict =

Empty (* considered black *)
| Black of ’a entry * ’a dict * ’a dict
| Red of ’a entry * ’a dict * ’a dict

(*
* We refine the datatype ’a dict with an index of type
* (nat * nat * nat * nat). The meaning of the 4 numbers
* is: (color, black height, red height, size). A balanced
* tree is one such that
* (1) for every node in it, both of its sons are of the
* same black height.
* (2) the red height of the tree is 0, which means that there exist

no consecutive red nodes.
*)

typeref ’a dict of nat * nat * nat * nat with
Empty <| ’a dict(0, 0, 0, 0)

| Black <|
{cl:nat, cr:nat, bh:nat, sl:nat, sr:nat}
’a entry * ’a dict(cl, bh, 0, sl) * ’a dict(cr, bh, 0, sr) ->
’a dict(0, bh+1, 0, sl+sr+1)

| Red <| {cl:nat, cr:nat, bh:nat, rhl:nat, rhr:nat, sl:nat, sr:nat}
’a entry * ’a dict(cl, bh, rhl, sl) * ’a dict(cr, bh, rhr, sr) ->
’a dict(1, bh, cl+cr+rhl+rhr, sl+sr+1)

(* note if the root of a tree is black, then the tree is a balanced *)

162 APPENDIX A. DML CODE EXAMPLES

fun compare (s1:int,s2:int) =
if s1 > s2 then GREATER else if s1 < s2 then LESS else EQUAL

where compare <| int * int -> order

fun(’a)
lookup dict key =
let

fun lk (Empty) = NONE
| lk (Red tree) = lk’ tree
| lk (Black tree) = lk’ tree

where lk <| ’a dict -> answer

and lk’ ((key1, datum1), left, right) =
(case compare(key,key1) of

EQUAL => SOME(key1)
| LESS => lk left
| GREATER => lk right)

where lk’ <| ’a entry * ’a dict * ’a dict -> answer
in

lk dict
end
where lookup <| ’a dict -> key -> answer

fun(’a)
restore_right(e, Red lt, Red (rt as (_,Red _,_))) =
Red(e, Black lt, Black rt)(* re-color *)

| restore_right(e, Red lt, Red (rt as (_,_,Red _))) =
Red(e, Black lt, Black rt)(* re-color *)

| restore_right(e, l as Empty, Red(re, Red(rle, rll, rlr), rr)) =
Black(rle, Red(e, l, rll), Red(re, rlr, rr))

| restore_right(e, l as Black _, Red(re, Red(rle, rll, rlr), rr)) =
(* l is black, deep rotate *)
Black(rle, Red(e, l, rll), Red(re, rlr, rr))

| restore_right(e, l as Empty, Red(re, rl, rr as Red _)) =
Black(re, Red(e, l, rl), rr)

| restore_right(e, l as Black _, Red(re, rl, rr as Red _)) =
(* l is black, shallow rotate *)
Black(re, Red(e, l, rl), rr)

| restore_right(e, l, r as Red(_, Empty, Empty)) = Black(e, l, r)

A.2. RED/BLACK TREE 163

| restore_right(e, l, r as Red(_, Black _, Black _)) =
Black(e, l, r) (* r must be a red/black tree *)

| restore_right(e, l, r as Black _) =
Black(e, l, r) (* r must be a red/black tree *)

where restore_right <|
{cl:nat, cr:nat, bh:nat, rhr:nat, sl:nat, sr:nat | rhr <= 1}
’a entry * ’a dict(cl, bh, 0, sl) * ’a dict(cr, bh, rhr, sr) ->
[c:nat | c <= 1] ’a dict(c, bh+1, 0, sl + sr + 1)

fun(’a)
restore_left(e, Red (lt as (_,Red _,_)), Red rt) =
Red(e, Black lt, Black rt)(* re-color *)

| restore_left(e, Red (lt as (_,_,Red _)), Red rt) =
Red(e, Black lt, Black rt)(* re-color *)

| restore_left(e, Red(le, ll as Red _, lr), r as Empty) =
Black(le, ll, Red(e, lr, r))

| restore_left(e, Red(le, ll as Red _, lr), r as Black _) =
(* r is black, shallow rotate *)
Black(le, ll, Red(e, lr, r))

| restore_left(e, Red(le, ll, Red(lre, lrl, lrr)), r as Empty) =
Black(lre, Red(le, ll, lrl), Red(e, lrr, r))

| restore_left(e, Red(le, ll, Red(lre, lrl, lrr)), r as Black _) =
(* r is black, deep rotate *)
Black(lre, Red(le, ll, lrl), Red(e, lrr, r))

| restore_left(e, l as Red(_, Empty, Empty), r) = Black(e, l, r)

| restore_left(e, l as Red(_, Black _, Black _), r) =
Black(e, l, r) (* l must be a red/black tree *)

| restore_left(e, l as Black _, r) =
Black(e, l, r) (* l must be a red/black tree *)

where restore_left <|
{cl:nat, cr:nat, bh:nat, rhl:nat, sl:nat, sr:nat | rhl <= 1}
’a entry * ’a dict(cl, bh, rhl, sl) * ’a dict(cr, bh, 0, sr) ->
[c:nat | c <= 1] ’a dict(c, bh+1, 0, sl + sr + 1)

164 APPENDIX A. DML CODE EXAMPLES

exception Item_Is_Found

fun(’a)
insert (dict, entry as (key,datum)) =
let

(* val ins : ’a dict -> ’a dict inserts entry
* ins (Red _) may violate color invariant at root,
* having red height 1
* ins (Black _) or ins (Empty) will always be red/black
* ins always preserves black height
*)

fun ins (Empty) = Red(entry, Empty, Empty)
| ins (Red(entry1 as (key1, datum1), left, right)) =
(case compare(key,key1) of

EQUAL => raise Item_Is_Found
| LESS => Red(entry1, ins left, right)
| GREATER => Red(entry1, left, ins right))

| ins(Black(entry1 as (key1, datum1), left, right)) =
(case compare(key,key1) of

EQUAL => raise Item_Is_Found
| LESS => restore_left(entry1, ins left, right)
| GREATER => restore_right(entry1, left, ins right))

where ins <|
{c:nat, bh:nat, s:nat}
’a dict(c, bh, 0, s) ->
[nc:nat, nrh:nat |
((c = 0 /\ nrh = 0 /\ nc <= 1) \/ (c = 1 /\ nrh <= 1 /\ nc = 1))]

’a dict(nc, bh, nrh, s+1)
in

let
val dict = ins dict

in
case dict of

Red (t as (_, Red _, _)) => Black t (* re-color *)
| Red (t as (_, _, Red _)) => Black t (* re-color *)
| Red (t as (_, Black _, Black _)) => dict
| Red (t as (_, Empty, Empty)) => dict
| Black _ => dict

end handle Item_Is_Found => dict
end
where insert <|
{c:nat, bh:nat, s:nat}
’a dict(c, bh, 0, s) * ’a entry ->
[nc:nat, nbh:nat, ns:nat |

A.3. QUICKSORT ON ARRAYS 165

(nbh = bh \/ nbh = bh + 1) /\ (ns = s \/ ns = s + 1)]
’a dict(nc, nbh, 0, ns)

end

A.3 Quicksort on Arrays

(*
* This example shows that array bounds checking is not required in
* the following implementation of an in-place quicksort algorithm
* on arrays. The code is copied from SML/NJ lib with some modification.
* There are 16 type annotations occupying about 40 lines.
*)

structure Array_QSort =
struct

datatype order = LESS | EQUAL | GREATER

assert sub <| {n:nat, i:nat | i < n } ’a array(n) * int(i) -> ’a
and update <| {n:nat, i:nat| i < n } ’a array(n) * int(i) * ’a -> unit
and length <| {n:nat} ’a array(n) -> int(n)

fun(’a){size:nat}
sortRange(arr, start, n, cmp) =
let

fun item i = sub(arr,i)
where item <| {i:nat | i < size } int(i) -> ’a

fun swap (i,j) =
let

val tmp = item i
in

update(arr, i, item j); update(arr, j, tmp)
end

where swap <|
{i:nat, j:nat | i < size /\ j < size } int(i) * int(j) -> unit

fun vecswap (i,j,n) =
if (n = 0) then () else (swap(i,j);vecswap(i+1,j+1,n-1))

where vecswap <|
{i:nat, j:nat, n:nat | i+n <= size /\ j+n <= size}
int(i) * int(j) * int(n) -> unit

(*
* insertSort is called if there are less than

166 APPENDIX A. DML CODE EXAMPLES

* eight elements to be sorted
*)

fun insertSort (start, n) =
let

val limit = start+n
fun outer i =

if i >= limit then ()
else

let
fun inner j =

if j <= start then outer(i+1)
else

let
val j’ = j - 1

in
case cmp(item j’,item j) of

GREATER => (swap(j,j’); inner j’)
| _ => outer(i+1)

end
where inner <| {j:nat | j < size } int(j) -> unit

in
inner i

end
where outer <| {i:nat} int(i) -> unit

in
outer(start+1)

end
where insertSort <|
{start:nat, n:nat | start+n <= size } int(start) * int(n) -> unit

(* calculate the median of three *)
fun med3(a,b,c) =

let
val a’ = item a
val b’ = item b
val c’ = item c

in
case (cmp(a’, b’),cmp(b’, c’)) of

(LESS, LESS) => b
| (LESS, _) => (case cmp(a’, c’) of LESS => c | _ => a)
| (_, GREATER) => b
| _ => (case cmp(a’, c’) of LESS => a | _ => c)

(* end case *)
end

where med3 <|

A.3. QUICKSORT ON ARRAYS 167

{a:nat,b:nat,c:nat | a < size /\ b < size /\ c < size }
int(a) * int(b) * int(c) -> [n:nat | n < size] int(n)

(* generate the pivot for splitting the elements *)
fun getPivot (a,n) =

if n <= 7 then a + n div 2
else

let
val p1 = a
val pm = a + n div 2
val pn = a + n - 1

in
if n <= 40 then med3(p1,pm,pn)
else

let
val d = n div 8
val p1 = med3(p1,p1+d,p1+2*d)
val pm = med3(pm-d,pm,pm+d)
val pn = med3(pn-2*d,pn-d,pn)

in
med3(p1,pm,pn)

end
end

where getPivot <|
{a:nat,n:nat | 1 < n /\ a + n <= size }
int(a) * int(n) -> [p:nat | p < size] int(p)

fun quickSort (arg as (a, n)) =
let

(*
* bottom was defined as a higher order
* function in the SML/NJ library
*)

fun bottom(limit, arg as (pa, pb)) =
if pb > limit then arg
else

case cmp(item pb,item a) of
GREATER => arg

| LESS => bottom(limit, (pa, pb+1))
| _ => (swap arg; bottom(limit, (pa+1,pb+1)))

where bottom <|
{l:nat, ppa:nat, ppb:nat |
l < size /\ ppa <= ppb <= l+1 }

int(l) * (int(ppa) * int(ppb)) ->
[pa:nat, pb:nat | ppa <= pa <= pb <= l+1]

168 APPENDIX A. DML CODE EXAMPLES

(int(pa) * int(pb))

(*
* top was defined as a higher order
* function in the SML/NJ library
*)

fun top(limit, arg as (pc, pd)) =
if limit > pc then arg
else case cmp(item pc,item a) of

LESS => arg
| GREATER => top(limit, (pc-1,pd))
| _ => (swap arg; top(limit, (pc-1,pd-1)))

where top <|
{l:nat, ppc:nat, ppd:nat |
0 < l <= ppc+1 /\ ppc <= ppd < size }

int(l) * (int(ppc) * int(ppd)) ->
[pc:nat, pd:nat | l <= pc+1 /\ pc <= pd <= ppd]
(int(pc) * int(pd))

fun split (pa,pb,pc,pd) =
let

val (pa,pb) = bottom(pc, (pa,pb))
val (pc,pd) = top(pb, (pc,pd))

in
if pb >= pc then (pa,pb,pc,pd)
else (swap(pb,pc); split(pa,pb+1,pc-1,pd))

end
where split <|
{ppa:nat, ppb:nat, ppc:nat, ppd:nat |
0 < ppa <= ppb <= ppc+1 /\ ppc <= ppd < size }

int(ppa) * int(ppb) * int(ppc) * int(ppd) ->
[pa:nat, pb:nat, pc:nat, pd:nat |
ppa <= pa <= pb <= pc+1 /\ pc <= pd <= ppd]

(int(pa) * int(pb) * int(pc) * int(pd))

val pm = getPivot arg
and _ = swap(a,pm)
and pa = a + 1
and pc = a + (n-1)
and (pa,pb,pc,pd) = split(pa,pa,pc,pc)
and pn = a + n

val r = min(pa - a, pb - pa)
val _ = vecswap(a, pb-r, r)

A.3. QUICKSORT ON ARRAYS 169

val r = min(pd - pc, pn - pd - 1)
val _ = vecswap(pb, pn-r, r)

val n’ = pb - pa
val _ = (if n’ > 1 then sort(a,n’) else ()) <| unit

val n’ = pd - pc
val _ = (if n’ > 1 then sort(pn-n’,n’) else ()) <| unit

in () end
where quickSort <|
{a:nat, n:nat | 7 <= n /\ a+n <= size } int(a) * int(n) -> unit

and sort (arg as (_, n)) =
if n < 7 then insertSort arg
else quickSort arg

where sort <|
{a:nat, n:nat | a+n <= size } int(a) * int(n) -> unit

in
sort (start,n)

end
where sortRange <|
{start:nat, n:nat | start+n <= size }
’a array(size) * int(start) * int(n) * (’a * ’a -> order) -> unit

(* sorted checks if a list is well-sorted *)
fun(’a){size:nat}
sorted cmp arr =
let

val len = length arr
fun s(v,i) =

let
val v’ = sub(arr,i)

in
case cmp(v,v’) of

GREATER => false
| _ => if i+1 = len then true else s(v’,i+1)

end
where s <| {i:nat | i < size } ’a * int(i) -> bool

in
if len <= 1 then true else s(sub(arr,0),1)

end
where sorted <| (’a * ’a -> order) -> ’a array(size) -> bool

end (* end of the structure *)

170 APPENDIX A. DML CODE EXAMPLES

A.4 Mergesort on Lists

structure Merge_Sort =
struct

datatype ’a listlist = Nil | Cons of ’a list * ’a listlist
typeref ’a listlist of nat * nat
with Nil <| ’a listlist(0,0)

| Cons <| {l:nat,m:nat,n:nat}
’a list(l) * ’a listlist(m,n) -> ’a listlist(m+1,n+l)

assert not <| bool -> bool
and rev <| {n:nat} ’a list(n) -> ’a list(n)
and hd <| { n:nat | n > 0 } ’a list(n) -> ’a

fun(’a)
sort cmp ls =
let

fun merge([],ys) = ys
| merge(xs,[]) = xs
| merge(x::xs,y::ys) =
if cmp(x,y) then y::merge(x::xs,ys)
else x::merge(xs,y::ys)

where merge <|
{m:nat, n:nat} ’a list(m) * ’a list(n) -> ’a list(m+n)

fun mergepairs’(ls as Cons(l,Nil)) = l
| mergepairs’(Cons(l1,Cons(l2,ls))) =
mergepairs’(Cons(merge(l1,l2),ls))

where mergepairs’ <|
{m:nat, n:nat | m > 0} ’a listlist(m,n) -> ’a list(n)

fun mergepairs(ls as Cons(l,Nil), k) = ls
| mergepairs(Cons(l1,Cons(l2,ls)),k) =
if k mod 2 = 1 then Cons(l1,Cons(l2,ls))
else mergepairs(Cons(merge(l1,l2),ls), k div 2)

where mergepairs <|
{m:nat, n:nat | m > 0}
’a listlist(m,n) * int -> [m:nat | m > 0] ’a listlist(m,n)

fun nextrun(run,[]) = (rev run,[])
| nextrun(run,x::xs) =
if cmp(x,hd(run)) then nextrun(x::run,xs)
else (rev run,x::xs)

where nextrun <|
{m:nat, n:nat | m > 0 }

A.5. A BYTE COPY FUNCTION 171

’a list(m) * ’a list(n) ->
[p:nat, q:nat | p+q = m+n] (’a list(p) * ’a list(q))

fun samsorting([], ls, k) = mergepairs’(ls)
| samsorting(x::xs, ls, k) =
let

val (run,tail) = nextrun([x],xs)
in

samsorting(tail, mergepairs(Cons(run,ls),k+1), k+1)
end

where samsorting <|
{l:nat,m:nat,n:nat | m+l > 0}
’a list(l) * ’a listlist(m,n) * int -> ’a list(n+l)

in
case ls of [] => [] | _::_ => samsorting(ls, Nil, 0)

end
where sort <| {n:nat} (’a * ’a -> bool) -> ’a list(n) -> ’a list(n)

fun(’a)
sorted (cmp) =
let

fun s (x::(rest as (y::_))) = not(cmp(x, y)) andalso s rest
| s l = true
where s <| ’a list -> bool

in s end
where sorted <| (’a * ’a -> bool) -> ’a list -> bool

end (* end of mergeSort *)

A.5 A Byte Copy Function

This implementation of a byte copy function is used in the Fox project.

(* This is an optimized version of byte copy function used in the Fox
* project. All the array bound checks can be eliminated. There are
* 13 type annotations, which consists of roughly 20% of the code
*)

structure BCopy =
struct

assert sub1 <| {n:nat, i:nat| i < n } array(n) * int(i) -> byte1
and update1 <|

{n:nat, i:nat| i < n } array(n) * int(i) * byte1 -> unit

172 APPENDIX A. DML CODE EXAMPLES

assert sub2 <| {n:nat, i:nat| i + 1 < n } array(n) * int(i) -> byte2
and update2 <|

{n:nat, i:nat| i + 1 < n } array(n) * int(i) * byte2 -> unit

assert sub4 <| {n:nat, i:nat| i + 3 < n } array(n) * int(i) -> byte4
and update4 <|

{n:nat, i:nat| i + 3 < n } array(n) * int(i) * byte4 -> unit

assert << <| byte4 * int -> byte4
and || <| byte4 * byte4 -> byte4
and >> <| byte4 * int -> byte4

fun{m:nat, n:nat, endsrc:nat}
unaligned(src, srcpos, endsrc, dest, destpos) =
let

fun loop(i,j) =
if (i >= endsrc) then ()
else (update1(dest, j, sub1(src, i)); loop(i+1, j+1))

where loop <|
{i:nat, j:nat | j + endsrc - i <= n } int(i) * int(j) -> unit

in
loop(srcpos, destpos)

end
where unaligned <|
{srcpos:nat, destpos:nat | endsrc <= m /\ destpos + endsrc - srcpos <= n }
array(m) * int(srcpos) * int(endsrc) * array(n) * int(destpos) -> unit

fun{m:nat, n:nat, endsrc:nat}
common(src, srcpos, endsrc, dest, destpos) =
case endsrc - srcpos of

1 => (update1(dest, destpos, sub1(src, srcpos)))

| 2 => (update1(dest, destpos, sub1(src, srcpos));
update1(dest, destpos+1, sub1(src, srcpos+1)))

| 4 => (update1(dest, destpos, sub1(src, srcpos));
update1(dest, destpos+1, sub1(src, srcpos+1));
update1(dest, destpos+2, sub1(src, srcpos+2));
update1(dest, destpos+3, sub1(src, srcpos+3)))

| 8 => (update1(dest, destpos, sub1(src, srcpos));
update1(dest, destpos+1, sub1(src, srcpos+1));
update1(dest, destpos+2, sub1(src, srcpos+2));
update1(dest, destpos+3, sub1(src, srcpos+3));

A.5. A BYTE COPY FUNCTION 173

update1(dest, destpos+4, sub1(src, srcpos+4));
update1(dest, destpos+5, sub1(src, srcpos+5));
update1(dest, destpos+6, sub1(src, srcpos+6));
update1(dest, destpos+7, sub1(src, srcpos+7)))

| 16 => (update1(dest, destpos, sub1(src, srcpos));
update1(dest, destpos+1, sub1(src, srcpos+1));
update1(dest, destpos+2, sub1(src, srcpos+2));
update1(dest, destpos+3, sub1(src, srcpos+3));
update1(dest, destpos+4, sub1(src, srcpos+4));
update1(dest, destpos+5, sub1(src, srcpos+5));
update1(dest, destpos+6, sub1(src, srcpos+6));
update1(dest, destpos+7, sub1(src, srcpos+7));
update1(dest, destpos+8, sub1(src, srcpos+8));
update1(dest, destpos+9, sub1(src, srcpos+9));
update1(dest, destpos+10, sub1(src, srcpos+10));
update1(dest, destpos+11, sub1(src, srcpos+11));
update1(dest, destpos+12, sub1(src, srcpos+12));
update1(dest, destpos+13, sub1(src, srcpos+13));
update1(dest, destpos+14, sub1(src, srcpos+14));
update1(dest, destpos+15, sub1(src, srcpos+15)))

| 20 => (update1(dest, destpos, sub1(src, srcpos));
update1(dest, destpos+1, sub1(src, srcpos+1));
update1(dest, destpos+2, sub1(src, srcpos+2));
update1(dest, destpos+3, sub1(src, srcpos+3));
update1(dest, destpos+4, sub1(src, srcpos+4));
update1(dest, destpos+5, sub1(src, srcpos+5));
update1(dest, destpos+6, sub1(src, srcpos+6));
update1(dest, destpos+7, sub1(src, srcpos+7));
update1(dest, destpos+8, sub1(src, srcpos+8));
update1(dest, destpos+9, sub1(src, srcpos+9));
update1(dest, destpos+10, sub1(src, srcpos+10));
update1(dest, destpos+11, sub1(src, srcpos+11));
update1(dest, destpos+12, sub1(src, srcpos+12));
update1(dest, destpos+13, sub1(src, srcpos+13));
update1(dest, destpos+14, sub1(src, srcpos+14));
update1(dest, destpos+15, sub1(src, srcpos+15));
update1(dest, destpos+16, sub1(src, srcpos+16));
update1(dest, destpos+17, sub1(src, srcpos+17));
update1(dest, destpos+18, sub1(src, srcpos+18));
update1(dest, destpos+19, sub1(src, srcpos+19)))

| _ => unaligned(src, srcpos, endsrc, dest, destpos)
where common <|

174 APPENDIX A. DML CODE EXAMPLES

{srcpos:nat, destpos:nat |
endsrc <= m /\ destpos + endsrc - srcpos <= n }

array(m) * int(srcpos) * int(endsrc) * array(n) * int(destpos) -> unit

fun{m:nat, n:nat, endsrc:nat}
sixteen(src, srcpos, endsrc, dest, destpos) =
let

fun loop(i, j) =
if i >= endsrc then ()
else

(update4(dest, j, sub4(src, i));
update4(dest, j+4, sub4(src, i+4));
update4(dest, j+8, sub4(src, i+8));
update4(dest, j+12, sub4(src, i+12));
loop(i+16, j+16))

where loop <|
{i:nat, j:nat | (endsrc - i) mod 16 = 0 /\ j + endsrc - i <= n }
int(i) * int(j) -> unit

in
loop(srcpos, destpos)

end
where sixteen <|
{srcpos:nat, destpos:nat |
endsrc <= m /\ (endsrc - srcpos) mod 16 = 0 /\
destpos + endsrc - srcpos <= n }

array(m) * int(srcpos) * int(endsrc) * array(n) * int(destpos) -> unit

fun{srcalign:nat}
aligned(src, srcpos, endsrc, dest, destpos, srcalign, bytes) =
let

val front =
(case srcalign of

0 => 0
| 1 => 3
| 2 => 2
| 3 => 1) <| [i:nat | (srcalign = 0 /\ i = 0) \/

(srcalign = 1 /\ i = 3) \/
(srcalign = 2 /\ i = 2) \/
(srcalign = 3 /\ i = 1)

] int(i)

val rest = bytes - front
val tail = rest mod 16
val middle = rest - tail

A.5. A BYTE COPY FUNCTION 175

val midsrc = srcpos + front
val middest = destpos + front

val backsrc = midsrc + middle
val backdest = middest + middle

in
unaligned(src, srcpos, midsrc, dest, destpos);
sixteen(src, midsrc, backsrc, dest, middest);
unaligned(src, backsrc, endsrc, dest, backdest)

end
where aligned <|
{m:nat, n:nat, srcpos:nat, endsrc:nat, destpos:nat, bytes:nat |
endsrc <= m /\ srcpos + bytes = endsrc /\
destpos + bytes <= n /\ 16 <= bytes }

array(m) * int(srcpos) * int(endsrc) *
array(n) * int(destpos) * int(srcalign) * int(bytes) -> unit

fun{m:nat, n:nat, endsrc:nat}
eightlittle(src, srcpos, endsrc, dest, destpos) =
let

assert makebyte2 <| byte4 -> byte2
and makebyte4 <| byte2 -> byte4

fun loop(i, j, carry) =
if i >= endsrc then update2(dest, j, makebyte2(carry))
else

let
val srcv = sub4(src, i)

in
update4(dest, j, ||(carry, <<(srcv, 16)));
let

val i = i + 4
val j = j + 4
val carry = >>(srcv, 16)
val srcv = sub4(src, i)

in
update4(dest, j, ||(carry, <<(srcv, 16)));
loop(i+4, j+4, >>(srcv, 16))

end
end

where loop <|
{i:nat, j:nat |
i <= endsrc /\ (endsrc - i) mod 8 = 0 /\ j + endsrc - i + 2 <= n }

int(i) * int(j) * byte4 -> unit

176 APPENDIX A. DML CODE EXAMPLES

in
loop(srcpos+2, destpos, makebyte4(sub2(src, srcpos)))

end
where eightlittle <|
{srcpos:nat, destpos:nat |
endsrc <= m /\ srcpos <= endsrc /\
(endsrc - srcpos) mod 8 = 2 /\ destpos + endsrc - srcpos <= n }

array(m) * int(srcpos) * int(endsrc) * array(n) * int(destpos) -> unit

fun{m:nat, n:nat, endsrc:nat}
eightbig(src, srcpos, endsrc, dest, destpos) =
let

assert makebyte2 <| byte4 -> byte2
and makebyte4 <| byte2 -> byte4

fun loop(i, j, carry) =
if i >= endsrc then update2(dest, j, makebyte2(>>(carry, 16)))
else

let
val srcv = sub4(src, i)

in
update4(dest, j, ||(carry, >>(srcv, 16)));
let

val i = i + 4
val j = j + 4
val carry = <<(srcv, 16)
val srcv = sub4(src, i)

in
update4(dest, j, ||(carry, >>(srcv, 16)));
loop(i + 4, j + 4, <<(srcv, 16))

end
end

where loop <|
{i:nat, j:nat |
i <= endsrc /\ (endsrc - i) mod 8 = 0 /\ j + endsrc - i + 2 <= n }

int(i) * int(j) * byte4 -> unit
in

loop(srcpos + 2, destpos, <<(makebyte4(sub2(src, srcpos)), 16))
end
where eightbig <|
{srcpos:nat, destpos:nat | endsrc <= m /\ srcpos <= endsrc /\
(endsrc - srcpos) mod 8 = 2 /\ destpos + endsrc - srcpos <= n }

array(m) * int(srcpos) * int(endsrc) * array(n) * int(destpos) -> unit

assert endian <| int and Little <| int

A.5. A BYTE COPY FUNCTION 177

fun eight(src, srcpos, endsrc, dest, destpos) =
if endian = Little then eightbig(src, srcpos, endsrc, dest, destpos)
else eightlittle(src, srcpos, endsrc, dest, destpos)

where eight <|
{m:nat, n:nat, endsrc:nat, srcpos:nat, destpos:nat |
endsrc <= m /\ srcpos <= endsrc /\
(endsrc - srcpos) mod 8 = 2 /\ destpos + endsrc - srcpos <= n }

array(m) * int(srcpos) * int(endsrc) * array(n) * int(destpos) -> unit

fun{srcalign:nat}
semialigned(src, srcpos, endsrc, dest, destpos, srcalign, bytes) =
let

val front =
(case srcalign of

0 => 2
| 2 => 0
| 1 => 1
| 3 => 3) <| [i:nat | (srcalign = 0 /\ i = 2) \/

(srcalign = 2 /\ i = 0) \/
(srcalign = 1 /\ i = 1) \/
(srcalign = 3 /\ i = 3)

] int(i)
val rest = bytes -front
val tail = (rest - 2) mod 8
val middle = rest - tail
val midsrc = srcpos + front
val middest = destpos + front
val backsrc = midsrc + middle
val backdest = middest + middle

in
unaligned(src, srcpos, midsrc, dest, destpos);
eight(src, midsrc, backsrc, dest, middest);
unaligned(src, backsrc, endsrc, dest, backdest)

end
where semialigned <|
{m:nat, n:nat, srcpos:nat, endsrc:nat, destpos:nat, bytes:nat |
endsrc <= m /\ srcpos + bytes = endsrc /\
destpos + bytes <= n /\ 16 <= bytes }

array(m) * int(srcpos) * int(endsrc) *
array(n) * int(destpos) * int(srcalign) * int(bytes) -> unit

fun copy(src, srcpos, bytes, dest, destpos) =
if (bytes < 25) then

178 APPENDIX A. DML CODE EXAMPLES

common(src, srcpos, srcpos + bytes, dest, destpos)
else

let
val srcalign = srcpos mod 4
val destalign = destpos mod 4
val endsrc = srcpos + bytes

in
if srcalign = destalign then
aligned(src, srcpos, endsrc, dest, destpos, srcalign, bytes)

else if (srcalign + destalign) mod 2 = 0 then
semialigned(src, srcpos, endsrc, dest,

destpos, srcalign, bytes)
else unaligned(src, srcpos, endsrc, dest, destpos)

end
where copy <|
{m:nat, n:nat, srcpos:nat, bytes:int, destpos:nat |
srcpos + bytes <= m /\ destpos + bytes <= n }

array(m) * int(srcpos) * int(bytes) * array(n) * int(destpos) -> unit
end (* end of the structure BCopy *)

Bibliography

Andrews, P., M. Bishop, S. Issar, D. Nesmith, F. Pfenning, and H. Xi (1996, June). TPS: A
theorem proving system for classical type theory. Journal of Automated Reasoning 16 (3),
321–353.

Augustsson, L. (1998). Cayenne – a language with dependent types. In Proceedings of the 3rd
ACM SIGPLAN International Conference on Functional Programming, pp. 239–250.

Augustsson, L., T. Coquand, and B. Nordström (1990). A short description of another logical
framework. In Proceedings of the First Workshop on Logical Frameworks, pp. 39–42.

Barendregt, H. P. (1992). Lambda calculi with types. In S. Abramsky, D. M. Gabbay, and
T. Maibaum (Eds.), Handbook of Logic in Computer Science, Volume II, pp. 117–441. Oxford:
Clarendon Press.

Bershad, B., S. Savage, P. Pardyak, E. G. Sirer, D. Becker, M. Fiuczynski, C. Chambers, and
S. Eggers (1995). Extensibility, safety and performance in the SPIN operating system. In
Proceedings of the 15th ACM Symposium on Operating System Principles (SOSP-15), pp.
267–284.

Bird, R. J. (1990). A calculus of functions for program derivation. In D. Turner (Ed.), Topics in
Functional Programming.

Buhler, J. (1995, September). The Fox project: A language-structured approach to networking
software. ACM Crossroads 2.1. Electronic Publication available as
http://www.acm.org/crossroads/xrds2-1/foxnet.html.

Burstall, R. M. and J. L. Darlington (1977, January). A transformation system for developing
recursive programs. Journal of ACM 24 (1), 44–67.

Church, A. (1940). A formulation of the simple type theory of types. Journal of Symbolic Logic 5,
56–68.

Church, A. and J. B. Rosser (1936). Some properties of conversion. Transactions of the American
Mathematical Society 39, 472–482.

Clément, D., J. Despeyroux, T. Despeyroux, and G. Kahn (1986). A simple applicative language:
Mini-ML. In Proceedings of 1986 Conference on LISP and Functional Programming, pp. 13–
27.

Constable, R. L. et al. (1986). Implementing Mathematics with the NuPrl Proof Development
System. Englewood Cliffs, New Jersey: Prentice-Hall.

Constable, R. L. and S. F. Smith (1987, June). Partial objects in constructive type theory. In
Proceedings of Symposium on Logic in Computer Science, Ithaca, New York, pp. 183–193.

179

180 BIBLIOGRAPHY

Coquand, T. (1991). An algorithm for testing conversion in type theory. In G. Plotkin and
G. Huet (Eds.), Logical Frameworks, pp. 255–279. Cambridge University Press.

Coquand, T. (1992). Pattern matching with dependent types. In Proceedings of the Workshop
on Types for Proofs and Programs, pp. 85–92.

Coquand, T. and G. Huet (1985). Constructions: A higher order proof system for mechaniz-
ing mathematics. In B. Buchberger (Ed.), EUROCAL ’85, Volume 203 of Lecture Notes in
Computer Science, Berlin, pp. 151–184. Springer-Verlag.

Coquand, T. and G. Huet (1986, May). The calculus of constructions. Rapport de Recherche
530, INRIA, Rocquencourt, France.

Coquand, T. and G. Huet (1988, February–March). The calculus of constructions. Information
and Computation 76 (2–3), 95–120.

Dantzig, G. and B. Eaves (1973). Fourier-Motzkin elimination and its dual. Journal of Combi-
natorial Theory (A) 14, 288–297.

de Bruijn, N. G. (1980). A survey of the project AUTOMATH. In J. P. Seldin and J. R. Hindley
(Eds.), To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism,
pp. 579–606. London: Academic Press.

Dijkstra, E. W. (1975, August). Guarded commands, nondeterminacy and formal derivation of
programs. Communications of the ACM 18 (8), 453–457.

Dijkstra, E. W. (1976). A Discipline of Programming. Englewood Cliffs, New Jersey: Prentice-
Hall.

Draves, S. (1997). Automatic Program Specialization for Interactive Media. Ph. D dissertation,
Carnegie Mellon University. Available as Technical Report No. CMU-CS-97-159.

Feferman, S. (1979). Constructive theories of functions and classes. In M. Boffa, D. van Dalen,
and K. MacAloon (Eds.), Logic Colloquium ’78. North-Holland.

Floyd, R. W. (1967). Assigning meanings to programs. In J. T. Schwartz (Ed.), Mathematical
Aspects of Computer Science, Volume 19 of Proceedings of Symposia in Applied Mathematics,
Providence, Rhode Island, pp. 19–32. American Mathematical Society.

Freeman, T. (1994, March). Refinement Types for ML. Ph. D. dissertation, Carnegie Mellon
University. Available as Technical Report CMU-CS-94-110.

Freeman, T. and F. Pfenning (1991). Refinement types for ML. In ACM SIGPLAN Conference
on Programming Language Design and Implementation, Toronto, Ontario, pp. 268–277.

Frühwirth, T. (1992). Constraint simplification rules. Technical Report ECRC-92-18, European
Computer-Industry Center, ECRC GMBH, Arabellastr, 17 D-8000 München 81, Germany.

Gupta, R. (1994). Optimizing array bound checks using flow analysis. ACM Letters on Program-
ming Languages and Systems 2 (1–4), 135–150.

Harper, R., P. Lee, and F. Pfenning (1998, January). The Fox project: Advanced language
technology for extensible systems. Technical Report CMU-CS-98-107, School of Computer
Science, Carnegie Mellon University, Pittsburgh, PA. (Also published as Fox Memorandum
CMU-CS-FOX-98-02).

BIBLIOGRAPHY 181

Harper, R., J. C. Mitchell, and E. Moggi (1990). Higher-order modules and the phase distinc-
tion. In Conference Record of the Seventeenth Annual ACM Symposium on Principles of
Programming Languages, pp. 341–354.

Harper, R. W., F. Honsell, and G. D. Plotkin (1993, January). A framework for defining logics.
Journal of the ACM 40 (1), 143–184.

Hayashi, S. (1990). An introduction to PX. In G. Huet (Ed.), Logical Fundation of Functional
Programming. Addison-Weysley.

Hayashi, S. (1991). Singleton, union and intersection types for program extraction. In A. R.
Meyer (Ed.), Proceedings of the International Conference on Theoretical Aspects of Computer
Software, pp. 701–730.

Hayashi, S. and H. Nakano (1988). PX: A Computational Logic. The MIT Press.

Hoare, C. A. R. (1969, October). An axiomatic basis for computer programming. Communica-
tions of the ACM 12 (10), 576–580 and 583.

Honsell, F., I. A. Mason, S. Smith, and C. Talcott (1995, 15 May). A variable typed logic of
effects. Information and Computation 119 (1), 55–90.

Hughes, J., L. Pareto, and A. Sabry (1996). Proving the correctness of reactive systems us-
ing sized types. In Conference Record of 23rd ACM SIGPLAN Symposium on Principles of
Programming Languages, pp. 410–423.

Jackson, D., J. Somesh, and C. A. Damon (1996). Faster checking of software specifications.
In Proceedings of the 23rd ACM SIGPLAN Symposium on Principles of Programming Lan-
guages.

Jaffar, J. and M. J. Maher (1994, May/July). Constraint logic programming: a survey. Journal
of Logic Programming 19/20, 503–581. Special 10th Anniversary Issue.

Jay, C. and M. Sekanina (1996). Shape checking of array programs. Technical Report 96.09,
University of Technology, Sydney, Australia.

Kahn, G. (1987). Natural semantics. In Proceedings of the Symposium on Theoretical Aspects of
Computer Science, pp. 22–39. Springer-Verlag LNCS 247.

Kahrs, S., D. Sannella, and A. Tarlecki (1994). Deferred compilation: The automation of run-
time code generation. Report ECS-LFCS-94-300, University of Edinburgh.

Kolte, P. and M. Wolfe (1995, June). Elimination of redundant array subscript checks. In ACM
SIGPLAN ’95 Conference on Programming Language Design and Implementation. ACM
Press.

Lou, Z. (1991). A unifying theory of dependent types: the schematic approach. Technical Report
LFCS-92-202, University of Edinburgh.

Luo, Z. (1989). ECC: an extended Calculus of Constructions. In R. Parikh (Ed.), Proceeding
of Fourth Annual Symposium on Logic in Computer Science, pp. 386–395. IEEE computer
Society Press.

Martin-Löf, P. (1984). Intuitionistic Type Theory. Naples, Italy: Bibliopolis.

Martin-Löf, P. (1985). Constructive mathematics and computer programming. In C. R. A. Hoare
(Ed.), Mathematical Logic and Programming Languages. Prentice-Hall.

182 BIBLIOGRAPHY

Mendler, N. (1987, June). Recursive types and type constraints in second-order lambda calcu-
lus. In Proceedings of Symposium on Logic in Computer Science, pp. 30–36. The Computer
Society of the IEEE.

Michaylov, S. (1992, August). Design and Implementation of Practical Constraint Logic Pro-
gramming Systems. Ph. D. thesis, Carnegie Mellon University. Available as Technical Report
CMU-CS-92-168.

Milner, R. (1978, December). A theory of type polymorphism in programming. Journal of Com-
puter and System Sciences 17 (3), 348–375.

Milner, R. and M. Tofte (1991). Commentary on Standard ML. Cambridge, Massachusetts: MIT
Press.

Milner, R., M. Tofte, and R. W. Harper (1990). The Definition of Standard ML. Cambridge,
Massachusetts: MIT Press.

Milner, R., M. Tofte, R. W. Harper, and D. MacQueen (1997). The Definition of Standard ML.
Cambridge, Massachusetts: MIT Press.

Moggi, E. (1989). Computational lambda-calculus and monads. In Proceedings Fourth Annual
Symposium on Logic in Computer Science, pp. 14–23.

Morrisett, G. (1995). Compiling with Types. Ph. D dissertation, Carnegie Mellon University.
Available as Technical Report No. CMU-CS-95-226.

Morrisett, G., D. Walker, K. Crary, and N. Glew (1998, January). From system F to typed assem-
bly language. In Proceedings of ACM Symposium on Principles of Programming Languages,
pp. 85–97.

Nakano, H. (1994, Octorber). A constructive logic behind the catch and throw mechanism.
Annals of Pure and Applied Logic 69 (2–3), 269–301.

Naur, P. (1966). Proof of algorithms by general snapshots. BIT 6, 310–316.

Necula, G. (1997). Proof-carrying code. In Conference Record of 24th Annual ACM Symposium
on Principles of Programming Languages, pp. 106–119. ACM press.

Necula, G. and P. Lee (1998, June). The design and implementation of a certifying compiler. In
ACM SIGPLAN ’98 Conference on Programming Language Design and Implementation, pp.
333–344. ACM press.

Nordström, B. (1993). The ALF proof editor. In Proceedings of the Workshop on Types for proofs
and programs, pp. 253–266.

Parent, C. (1995). Synthesizing proofs from programs in the calculus of inductive constructions.
In Proceedings of the International Conference on Mathematics for Programs Constructions,
pp. 351–379. Springer-Verlag LNCS 947.

Paulin-Mohring, C. (1993). Inductive definitions in the system Coq: rules and properties. In
M. Bezem and J. de Groote (Eds.), Proceedings of the International Conference on Typed
Lambda Calculi and Applications, Volume 664 of Lecture Notes in Computer Science, pp.
328–345.

Peyton Jones, S. et al. (1999, February). Haskell 98 – A non-strict, purely functional language.
Available at
http://www.haskell.org/onlinereport/.

BIBLIOGRAPHY 183

Pfenning, F. (1989). Elf: A language for logic definition and verified metaprogramming. In
Proceedings of Fourth Annual Symposium on Logic in Computer Science, pp. 313–322.

Pfenning, F. (1993). On the undecidability of partial polymorphic type reconstruction. Funda-
menta Informaticae 19(1/2), 185–199.

Pfenning, F. and C. Paulin-Mohring (1989). Inductively defined types in the Calculus of Con-
structions. In Proceedings of fifth International Conference on Mathematical Foundations of
Programming Semantics, Volume 442 of Lecture Notes in Computer Science, pp. 209–228.

Pollack, R. (1994). The Theory of LEGO: A Proof Checker for the Extended Calculus of Con-
structions. Ph. D. dissertation, University of Edinburgh.

Pugh, W. and D. Wonnacott (1992). Eliminating false data dependences using the Omega test.
In ACM SIGPLAN ’92 Conference on Programming Language Design and Implementation,
pp. 140–151. ACM Press.

Pugh, W. and D. Wonnacott (1994, November). Experience with constraint-based array depen-
dence analysis. Technical Report CS-TR-3371, University of Maryland.

Sabry, A. and M. Felleisen (1993). Reasoning about programs in continuation-passing style. LISP
and Symbolic Computation 6 (3/4), 289–360.

Sannella, D. and A. Tarlecki (1989, February). Toward formal development of ML programs:
Foundations and methodology. Technical Report ECS-LFCS-89-71, Laboratory for Founda-
tions of Computer Science, Department of Computer Science, University of Edinburgh.

Schürmann, C. and F. Pfenning (1998). Automated theorem proving in a simple meta-logic for
lf. In Proceedings of the 15th International Conference on Automated Deduction (CADE),
pp. 286–300. Springer-Verlag LNCS 1421.

Shankar, N. (1996, May). Steps toward mechanizing program transformations using PVS. Science
of Computer Programming 26 (1–3), 33–57.

Shostak, R. E. (1977, October). On the SUP-INF method for proving Presburger formulas.
Journal of the ACM 24 (4), 529–543.

Sun Microsystems (1995). The Java language specification. Available as
ftp://ftp.javasoft.com/docs/javaspec.ps.zip.

Susuki, N. and K. Ishihata (1977). Implementation of array bound checker. In 4th ACM Sym-
posium on Principles of Programming Languages, pp. 132–143.

Tarditi, D., G. Morrisett, P. Cheng, C. Stone, R. Harper, and P. Lee (1996, June). A type-
directed optimizing compiler for ML. In Proceedings of ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, pp. 181–192.

Tolmach, A. and D. P. Oliva (1998, July). From ML to Ada(!?!): Strongly-typed language
interoperability via source translation. Journal of Functional Programming 8 (4), 367–412.

Wright, A. (1995). Simple imperative polymorphism. Journal of Lisp and Symbolic Computa-
tion 8 (4), 343–355.

Xi, H. (1997, November). Some examples of DML programming. Available at
http://www.cs.cmu.edu/~hwxi/DML/examples/.

184 BIBLIOGRAPHY

Xi, H. (1998, February). Some examples in DTAL. Available at
http://www.cs.cmu.edu/~hwxi/DTAL/examples/.

Xi, H. (1999, January). Dead code elimination through dependent types. In The First Interna-
tional Workshop on Practical Aspects of Declarative Languages, San Antonio.

Xi, H. and F. Pfenning (1998, June). Eliminating array bound checking through dependent
types. In Proceedings of ACM SIGPLAN Conference on Programming Language Design and
Implementation, Montreal, pp. 249–257.

Xi, H. and F. Pfenning (1999, January). Dependent types in practical programming. In Proceed-
ings of ACM SIGPLAN Symposium on Principles of Programming Languages, San Antonio,
pp. 214–227.

Zenger, C. (1997). Indexed types. Theoretical Computer Science 187, 147–165.

Zenger, C. (1998). Indizierte Typen. Ph. D. thesis, Fakultät für Informatik, Universität Karl-
sruhe.

Index

E(evaluation context), 26
F (extended evaluation context), 29
βF -redex, 30
→βF , 30
MLΠ

0 (C), 45
MLΠ,Σ

0 (C), 82
dom(M), 121
dom(θ), 16
‖ · ‖ (index erasure function), 53
DML0(C), 59
DML(C), 113
7→F , 29
7→0/1
F , 30

λpat
val , 15
↪→0, 18, 23
↪→d, 52
M(memory), 121
∼= (operational equivalence), 29
ML0, 19
ML0,exc, 117
ML0,exc,ref , 121
ML∀,Π,Σ0 (C), 107
ML∀0 , 103
ML∀,Π,Σ0,exc,ref(C), 127
7→, 27
| · | (type erasure function), 23
θ(substitutions), 16
θ1 ◦ θ2, 16
θ1 ∪ θ2, 16
θΓ, 45
θφ, 45

answers, 117, 121, 128
array bounds checking, 143

base types, 117

co-constr-datatype, 92

co-constr-fun, 92
co-constr-pi-l, 92
co-constr-pi-r, 92
co-constr-prod, 92
co-constr-sig-l, 92
co-constr-sig-r, 92
co-constr-unit, 92
coerce-datatype, 89
coerce-fun, 89
coerce-pi-l, 89
coerce-pi-r, 89
coerce-prod, 89
coerce-sig-l, 89
coerce-sig-r, 89
coerce-unit, 89
constr-anno-down, 69
constr-anno-up, 69
constr-app-down, 69, 99
constr-app-up, 69, 99
constr-case, 69, 99
constr-cons-w-down, 68, 98
constr-cons-w-up, 68, 98
constr-cons-wo-down, 68, 98
constr-cons-wo-up, 68, 98
constr-fix-down, 69, 99
constr-fix-up, 69, 99
constr-lam, 69, 99
constr-lam-anno, 69, 99
constr-let-down, 69, 99
constr-let-up, 69, 99
constr-match, 69, 99
constr-matches, 69, 99
constr-pi-elim, 68, 98
constr-pi-intro-1, 68, 98
constr-pi-intro-2, 68, 98
constr-prod-down, 98
constr-prod-up, 68, 98

185

186 INDEX

constr-unit-down, 68, 98
constr-unit-up, 68, 98
constr-var-down, 68, 98
constr-var-up, 68, 98
constraint domain, 36
contexts, 26, 128
ctx-empty, 46
ctx-var, 46

elab-anno-down, 64, 95
elab-anno-up, 61, 64, 95
elab-app-down, 64, 95
elab-app-up, 61, 64, 95
elab-assign-down, 134
elab-assign-up, 134
elab-case, 64, 95
elab-cons-w-down, 63, 94
elab-cons-w-up, 63, 94
elab-cons-wo-down, 63, 94
elab-cons-wo-up, 63, 94
elab-deref-down, 134
elab-deref-up, 134
elab-fix-down, 64, 95
elab-fix-up, 64, 95
elab-handle-down, 134
elab-handle-up, 134
elab-lam, 60, 64, 95
elab-lam-anno, 64, 95
elab-let-down, 61, 64, 95
elab-let-up, 64, 95
elab-match, 62, 64, 95
elab-matches, 64, 95
elab-pat-cons-w, 61
elab-pat-cons-wo, 61
elab-pat-prod, 61
elab-pat-unit, 61
elab-pat-var, 61
elab-pi-elim, 60, 63, 94
elab-pi-intro-1, 60, 63, 94
elab-pi-intro-2, 63, 94
elab-prod-down, 63, 94
elab-prod-up, 63, 94
elab-raise, 134
elab-ref-down, 134
elab-ref-up, 134

elab-sig-intro, 94
elab-unit-down, 63, 94
elab-unit-up, 63, 94
elab-var-down, 63, 94
elab-var-up, 63, 94
elaboration, 59
ev-app, 18, 52
ev-app-1, 122
ev-app-2, 122
ev-app-3, 122
ev-assign-1, 123
ev-assign-2, 123
ev-assign-3, 123
ev-case, 18, 52
ev-case-1, 122
ev-case-2, 122
ev-cons-w, 18, 52
ev-cons-w-1, 122
ev-cons-w-2, 122
ev-cons-wo, 18, 52, 122
ev-deref-1, 123
ev-deref-2, 123
ev-extrusion, 123
ev-fix, 18, 52, 123
ev-handle-1, 123
ev-handle-2, 123, 132
ev-handle-3, 123, 132
ev-iapp, 52
ev-ilam, 52
ev-lam, 18, 52, 122
ev-let, 18, 52
ev-let-1, 123
ev-let-2, 123
ev-poly, 105, 111
ev-prod, 18, 52
ev-prod-1, 122
ev-prod-2, 122
ev-prod-3, 122
ev-raise-1, 123
ev-raise-2, 123
ev-sig-elim, 82
ev-sig-intro, 82
ev-unit, 18, 52, 122
ev-var, 18, 52
evaluation contexts, 26

INDEX 187

exception, 117
expressions, 16, 82, 103, 107, 117, 121, 128
extended evaluation contexts, 29
extended values, 29
extensible datatype, 117

families, 128

ictx-empty, 37
ictx-ivar, 37
index constraints, 35
index context, 128
index contexts, 35
index erasure, 53
index objects, 35
index propositions, 35
index sorts, 35
index-cons, 37
index-first, 37
index-fun, 37
index-prod, 37
index-second, 37
index-subset, 37
index-unit, 37
index-var, 37
index-var-subset, 37

match contexts, 26
match-cons-w, 18, 49
match-cons-wo, 18, 49
match-prod, 18, 49
match-unit, 18, 49
match-var, 18, 49
matches, 16, 128
memories, 128
memory, 121

natural semantics, 51

open code, 17

patterns, 16, 103, 107, 128
programs, 121, 128

redexes, 26
reduction semantics, 26
reductions, 26

references, 120

sat-conj, 38
sat-exists, 38
sat-forall, 38
sat-impl, 38
satisfiability relation, 35
signatures, 16, 103, 107, 128
sort-base, 37
sort-prod, 37
sort-subset, 37
sort-unit, 37
status, 115
subst-empty, 49
subst-iempty, 36
subst-iprop, 49
subst-ivar, 36, 49
subst-prop, 36
subst-var, 49
substitution lemma, 49, 127
substitutions, 16, 103, 107, 128

ty-app, 48, 106
ty-assign, 121
ty-case, 48, 106
ty-cons-w, 48, 106
ty-cons-wo, 48, 106
ty-deref, 121
ty-eq, 48
ty-fix, 48, 106
ty-iapp, 48
ty-ilam, 48
ty-lam, 48, 106
ty-let, 48, 106
ty-letref, 121
ty-match, 48, 106
ty-matches, 48, 106
ty-memo, 121
ty-poly-intro, 106
ty-poly-var, 106
ty-prod, 48, 106
ty-sig-elim, 82
ty-sig-intro, 82
ty-unit, 48, 106
ty-var, 48

188 INDEX

type constructors, 103
type erasure, 23
type schemes, 103, 107, 128
type variable contexts, 103, 128
type variables, 103, 107
type-datatype, 46
type-fun, 46
type-match, 46
type-pi, 46
type-prod, 46
type-sig, 82
type-unit, 46
types, 82, 103, 107, 121, 128

value forms, 16, 82, 103, 128
value substitution, 17
values, 16, 82, 103, 107, 128

