For representing integer expressions, we declare a datatype IEXP as follows:
datatype IEXP = | IEXPcst of int // constants | IEXPneg of (IEXP) // negative | IEXPadd of (IEXP, IEXP) // addition | IEXPsub of (IEXP, IEXP) // subtraction | IEXPmul of (IEXP, IEXP) // multiplication | IEXPdiv of (IEXP, IEXP) // division // end of [IEXP]
fun eval_iexp (e0: IEXP): int = ( case+ e0 of | IEXPcst (n) => n | IEXPneg (e) => ~eval_iexp (e) | IEXPadd (e1, e2) => eval_iexp (e1) + eval_iexp (e2) | IEXPsub (e1, e2) => eval_iexp (e1) - eval_iexp (e2) | IEXPmul (e1, e2) => eval_iexp (e1) * eval_iexp (e2) | IEXPdiv (e1, e2) => eval_iexp (e1) / eval_iexp (e2) ) (* end of [eval_iexp] *)
Suppose we also allow the construct if-then-else to be use in forming integer expressions. For instance, we may write an integer expression like (if 1+2 <= 3*4 then 5+6 else 7-8). Note that the test (1+2 <= 3*4) is a boolean expression rather than an integer expression. This indicates that we also need to declare a datatype BEXP for representing boolean expressions. Furthermore, IEXP and BEXP should be defined mutually recursively as follows:
datatype IEXP = | IEXPcst of int // integer constants | IEXPneg of (IEXP) // negative | IEXPadd of (IEXP, IEXP) // addition | IEXPsub of (IEXP, IEXP) // subtraction | IEXPmul of (IEXP, IEXP) // multiplication | IEXPdiv of (IEXP, IEXP) // division | IEXPif of (BEXP(*test*), IEXP(*then*), IEXP(*else*)) // end of [IEXP] and BEXP = // [and] for combining datatype declarations | BEXPcst of bool // boolean constants | BEXPneg of BEXP // negation | BEXPconj of (BEXP, BEXP) // conjunction | BEXPdisj of (BEXP, BEXP) // disjunction | BEXPeq of (IEXP, IEXP) // equal-to | BEXPneq of (IEXP, IEXP) // not-equal-to | BEXPlt of (IEXP, IEXP) // less-than | BEXPlte of (IEXP, IEXP) // less-than-equal-to | BEXPgt of (IEXP, IEXP) // greater-than | BEXPgte of (IEXP, IEXP) // greater-than-equal-to // end of [BEXP]
fun eval_iexp ( e0: IEXP ) : int = ( // case+ e0 of | IEXPcst n => n | IEXPneg (e) => ~eval_iexp (e) | IEXPadd (e1, e2) => eval_iexp (e1) + eval_iexp (e2) | IEXPsub (e1, e2) => eval_iexp (e1) - eval_iexp (e2) | IEXPmul (e1, e2) => eval_iexp (e1) * eval_iexp (e2) | IEXPdiv (e1, e2) => eval_iexp (e1) / eval_iexp (e1) | IEXPif ( e_test, e_then, e_else ) => ( eval_iexp (if eval_bexp (e_test) then e_then else e_else) ) // end of [IEXPif] // ) (* end of [eval_iexp] *) and eval_bexp ( e0: BEXP ) : bool = ( // case+ e0 of | BEXPcst b => b | BEXPneg (e) => ~eval_bexp (e) | BEXPconj (e1, e2) => if eval_bexp (e1) then eval_bexp (e2) else false | BEXPdisj (e1, e2) => if eval_bexp (e1) then true else eval_bexp (e2) | BEXPeq (e1, e2) => eval_iexp (e1) = eval_iexp (e2) | BEXPneq (e1, e2) => eval_iexp (e1) != eval_iexp (e2) | BEXPlt (e1, e2) => eval_iexp (e1) < eval_iexp (e2) | BEXPlte (e1, e2) => eval_iexp (e1) <= eval_iexp (e2) | BEXPgt (e1, e2) => eval_iexp (e1) > eval_iexp (e2) | BEXPgte (e1, e2) => eval_iexp (e1) >= eval_iexp (e2) // ) (* end of [eval_bexp] *)
The integer and boolean expressions used in this example are all constant expressions containing no variables. Therefore, there is no need for an environment to evaluate them. I will present a more advanced example elsewhere to demonstrate how an evaluator for a simple call-by-value functional programming language like the core of ATS can be implemented.
Please find on-line the entirety of the code in this section plus some additional code for testing.