A persistent matrix of dimension m by n is just a persistent array of size m*n. Like in C, the representation of a matrix in ATS is row-major. In other words, element (i, j) in a matrix of dimension m by n is element i*n+j in the underlying array that represents the matrix.
Given a viewtype VT and two integers M and N, the type matrixref(VT, M, N) is for persistent matrices of dimension M by N that contain elements of the viewtype VT. There is no dimension information attached to matrixref-values explicitly. The interfaces for various functions on persistent matrices can be found in the SATS file prelude/SATS/matrixref.sats, which is automatically loaded by atsopt.
The following function is commonly used to create a matrixref-value:
fun{a:t0p} matrixref_make_elt{m,n:int} (m: size_t m, n: size_t n, x0: a):<!wrt> matrixref(a, m, n) // end of [matrixref_make_elt]
Also, the following cast function can be called to turn an array into a matrix:
castfn arrayref2matrixref {a:vt0p}{m,n:nat} (A: arrayref(a, m*n)):<> matrixref(a, m, n) // end of [arrayref2matrixref]
For accessing and updating the content of a matrix-cell, the following two functions matrixref_get_at and matrixref_set_at can be called:
// fun{a:t0p} matrixref_get_at {m,n:int} ( A: matrixref(a, m, n), i: sizeLt(m), n: size_t(n), j: sizeLt(n) ) :<!ref> (a) // end of [matrixref_get_at] // fun{a:t0p} matrixref_set_at {m,n:int} ( A: matrixref(INV(a), m, n), i: sizeLt(m), n: size_t n, j: sizeLt(n), x: a ) :<!refwrt> void // end of [matrixref_set_at] //
In the following presentation, I give an implementation of a function that turns a given square matrix into its transpose:
// extern fun{a:t0p} matrixref_transpose {n:nat} ( M: matrixref(a, n, n), n: size_t(n) ) : void // end of [matrixref_transpose] // implement {a}(*tmp*) matrixref_transpose {n}(M, n) = let // macdef mget(i, j) = matrixref_get_at(M, ,(i), n, ,(j)) // macdef mset(i, j, x) = matrixref_set_at(M, ,(i), n, ,(j), ,(x)) // fun loop {i,j:nat | i < j; j <= n } .<n-i,n-j>. ( i: size_t(i), j: size_t(j) ) : void = ( // if (j < n) then let val x = mget(i, j) val () = mset(i, j, mget(j, i)) val () = mset(j, i, x) in loop (i, j+1) end // end of [then] else let val i1 = succ (i) in // if i1 < n then loop(i1, succ(i1)) else () // end // end of [else] // ) (* end of [loop] *) // in if (n > 0) then loop(i2sz(0), i2sz(1)) else () end // end of [matrixref_transpose]
Please find on-line the entirety of the code used in this chapter.