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Abstract

We formalize in the logical framework ATS/LF a proof based on Tait’s method
that establishes the simply-typed lambda-calculus being strongly normalizing. In
this formalization, we employ higher-order abstract syntax to encode lambda-terms
and an inductive datatype to encode the reducibility predicate in Tait’s method.
The resulting proof is particularly simple and clean when compared to previously
formalized ones. Also, we mention briefly how a proof based on Girard’s method
can be formalized in a similar fashion that establishes System F being strongly
normalizing.
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1 Introduction

ATS/LF [4] is a logical framework rooted in the Applied Type System [15]
and is a pure total fragment of the programming language ATS. It uses a
restricted form of dependent types in which types may only be indexed by
terms drawn from limited domains in which equality is decidable (and can
also be effectively reasoned about). ATS/LF supports the use of higher-order
abstract syntax (HOAS) [9] to encode object languages. The use of HOAS,
in which object variables are identified with metavariables and β-reduction
models substitution, leads to particularly simple and elegant encodings. The
combination of a limited type-index language and a powerful proof language,
as found in ATS/LF, allows for inductive proofs of metatheorems over full
higher-order abstract syntax to be directly encoded as total recursive func-
tions. The use of inductive datatypes with negative occurrences allows for the
encoding of the reducibility predicate.
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In this paper, we formalize a proof of strong normalization of the simply
typed lambda-calculus (STLC) using Tait’s method, closely following the one
in [7]. On one hand, we use HOAS to encode lambda-terms, obviating the need
for explicitly manipulating substitution on such terms. On the other hand, we
use first-order abstract syntax (FOAS) to encode typing derivations in STLC,
which conveniently supports inductive reasoning on typing derivations.

To our knowledge this is the first formalized (or mechanized) proof of
strong normalization using Tait’s method for an object language defined with
HOAS. When compared to other formalized proofs of strong normalization
in the literature, the brevity of our formalized proof and its closeness to the
concise and elegant proof in [7] yield some concrete evidence in support of the
effectiveness of the representation of STLC in ATS/LF. To further strengthen
this claim, we also discuss the extension to the case of System F, formalizing
a proof of strong normalization of System F based on Girard’s notion of re-
ducibility candidates [6]. We expect that the techniques developed here can
also allow for the formalization of other proofs by logical relations while still
being able to take advantage of HOAS.

2 ATS/LF

ATS/LF is split into two main parts: the language of types and type indices
(called the statics), and the language of proofs (called the dynamics). The
statics is basically simply-typed lambda-calculus with constants (but no re-
cursion), and terms in the statics are referred to as static terms and types in
the statics are referred to as sorts. There are three important built-in base
sorts:

• prop : A sort for static terms which represent types of proofs.

• int : A sort for static integer terms. There are constants for each integer
(. . . , -1, 0, 1, . . . : int) and for addition (+ : (int, int) → int) and subtraction
(- : (int, int) → int).

• bool : A sort for static boolean conditions. There are constants for truth
values (true, false : bool) and equality and inequality on integers (=, < :
(int, int) → bool).

Static constants may take multiple arguments. Equality in the statics is ba-
sically β-conversion plus Presburger arithmetic, and it is decided by convert-
ing to βη long normal form and then using a decision procedure for integer
(in)equalities (after mapping boolean terms to integer terms).

The dynamics is a dependently typed language with well-founded recur-
sion, exhaustive case-analysis and inductive datatypes. Termination is checked
using a programmer-supplied metric, which is a tuple of static terms repre-
senting natural numbers and decreasing in each recursive call according to
the standard lexicographic ordering. Please see [13] for more details on this
style of termination checking. Case coverage is checked by requiring that any
unlisted cases introduce assumptions that allow false to be proven [14]. In the
concrete syntax, a proof (function) declaration looks like:
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Syntax:

terms t ∈ tm ::= x | λx.t | t1 t2 | c

types τ ∈ tp ::= B | τ1 → τ2

contexts Γ ∈ ctx ::= · | Γ, x : τ

Fig. 1. Syntax for Simply-typed λ-calculus

prfun proofName {x1:stx1, ..., xn:stxn} .<m1, ..., mk>.
(p1:T1, ..., pl:Tl) : [y1:sty1, ..., ym:stym] T = ...

This declaration is for a total recursive function called proofName (prfun
is a keyword for introducing proof functions) with the type:

∀x1 : stx1, . . . ,∀xn : stxn.(T1, . . . , Tl) → ∃y1 : sty1, . . . ,∃ym : stym.T

This type signature consists of four parts. First, there are n static parame-
ters xi of sorts stx i, enclosed in curly braces (think of these as universally
quantified). Second, there is a metric, enclosed in .< and >., which is a k-
tuple of static terms representing natural numbers and may contain x1, . . . , xn.
Third, there are l dynamic parameters pi with types Ti that may contain
x1, . . . , xn. Fourth, there is the return type which consists of m existentially
quantified static variables yi of sorts sty

i
and a type T which may contain

x1, . . . , xn, y1, . . . , ym. In the case where the declared function proofName is
not recursive, we may also use the keyword prfn and give no metric. Please
see [4,5] for some examples of proofs formed in ATS/LF.

3 Encoding the Object Language

3.1 Syntax

The object language for which we prove strong normalization is STLC with a
constant c and a base type B. The syntax of the language is shown in Figure 1.
We will encode the syntax in the statics using HOAS. In order to do so we
declare a static sort for each syntactic category. We begin with a sort, tm,
with constructors for each term constructor of the object language:

TMlam : (tm → tm) → tm TMapp : (tm, tm) → tm TMcst : tm

Object variables are encoded as metavariables. The constant TMcst is only
used in the formalization as a placeholder when recursing under lambda binders.
Object functions are represented by functions in the statics, and this allows
us to model substitution in the object language with application in the meta-
language. The terms of the object language are encoded in the statics with
the function p·q defined by:

pxq = x pcq = TMcst

pλx.tq = TMlam(λx.ptq) pt1 t2q = TMapp(pt1q, pt2q)

This is a compositional bijection between terms of the object language with
up to n free variables and static terms of sort tm with up to n free variables.
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Reduction: t1 −→ t2

t −→ t′

λx.t −→ λx.t′
(REDlam)

t1 −→ t′1
t1 t2 −→ t′1 t2

(REDapp1)

t2 −→ t′2
t1 t2 −→ t1 t′2

(REDapp2)
(λx.t1) t2 −→ t1[t2/x]

(REDapp3)

Fig. 2. Reduction rules for λ-calculus

To encode types we declare a sort tp, with constructors for each type
constructor of the object language:

TPbas : tp TPfun : (tp, tp) → tp

In some encodings with HOAS, there is no explicit representation of con-
texts in the representation of typing judgments, but instead the context of
the metalanguage is utilized. Such higher-order representations of the typ-
ing judgment, as often used in Twelf [10], benefit from inheriting substitution
on typings from the metalanguage, and so do not need a typing substitution
lemma. On the other hand, the use of explicit contexts allows for a first-order
representation of typing derivations. This, along with the separation between
statics and dynamics, allows us to prove metatheorems directly, using total
recursive functions, while still taking advantage of HOAS for object syntax.
The inconvenience of having to prove substitution on typing derivations is mi-
nor, and not pervasive as issues involving binders in the syntax are. In fact,
we do not ever need to make use of substitution on typing derivations in the
proof of strong normalization. Contexts, of sort ctx, are represented by lists
of pairs of a tm and a tp:

CTXnil : ctx CTXcons : (tm, tp, ctx) → ctx

We may sometimes abbreviate CTXcons(t,T,G) as (t, T ) :: G. Really this sort
represents explicitly typed substitutions. A term of sort ctx only represents a
well-formed context if its tm subterms are all distinct metavariables. We will
return to this issue when we encode typing derivations.

3.2 Reduction

The rules for small-step reduction for pure λ-calculus are shown in Figure 2.
Reduction, t −→ t′, is encoded as a datatype with type constructor RED :
(tm, tm, int) → prop (where the third index measures the size of the deriva-
tion) and one term constructor to encode each rule in Figure 2. The most
interesting rules are REDlam and REDapp3 which correspond to the dynamic
term constructors:

REDlam : ∀f : tm → tm.∀f ′ : tm → tm.∀n : nat.

(∀x : tm. RED(f x, f ′ x, n)) → RED(TMlam f, TMlam f ′, n + 1)

REDapp3 : ∀f : tm → tm.∀t : tm. RED(TMapp(TMlam f, t), f t, 0)

Since the rules themselves are first order, adequacy follows from the fact that
the higher-order syntax in the type indices correspond to the right terms. The
most interesting rule is REDlam: from the quantification in the argument of
the constructor (∀x : tm. RED(f x, f ′ x, n)) and the fact that application
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Type formation: ` τ type

` B type
(TPbas)

` τ1 type ` τ2 type

` τ1 → τ2 type
(TPfun)

Typing: Γ ` t : τ

(x : τ) ∈ Γ ` τ type

Γ ` x : τ
(DERvar)

Γ, x : τ1 ` t : τ2 ` τ1 type

Γ ` λx.t : τ1 → τ2

(DERlam)
Γ ` t1 : τ1 → τ2 Γ ` t2 : τ1

Γ ` t1 t2 : τ2

(DERapp)

Fig. 3. Typing rules for Simply-typed λ-calculus

in the statics models substitution, we can see that f x and f ′ x represent
lambda-terms with x being free and that TMlam f and TMlam f ′ represent
these same terms with x bound by a lambda.

3.3 Type Assignment

The rules for typing judgments are shown in Figure 3. We begin by defining
the context lookup relation (x : τ) ∈ Γ. For this we use a datatype with
type constructor INCTX : (tm, tp, ctx, int) → prop, where INCTX(t, T,G, n)
means that (t, T ) is at the nth index in G (abbreviated as (t, T ) ∈n G), and
two term constructors which correspond to the rules:

(t, T ) ∈0 ((t, T ) :: G)
(INCTXone)

(t, T ) ∈n G

(t, T ) ∈n+1 ((t′, T ′) :: G)
(INCTXshi)

Note that if INCTX(t, T,G, n) is inhabited, its member is unique and isomor-
phic to n (since it is a non-branching tree of depth n).

We encode the judgment ` τ type with a datatype, where the type con-
structor is TP : (tp, int) → prop and the term constructors represent the
following rules (where we write `n T type for TP(T, n)):

`0 TPbas type
(TPbas)

`n1
T1 type `n2

T2 type

`n1+n2+1 TPfun(T1, T2) type
(TPfun)

While the constructors of this type have the same names as terms of sort tp,
there is no ambiguity because dynamic terms are strictly separated from static
terms. The type TP(T, n) contains a single element which is isomorphic to
T if the size of T is n. The size index is used to provide a metric to support
induction on the structure of types. For convenience, we define TP0(T ) ≡
∃n : nat. TP(T, n) (which we abbreviate as ` T type).

The encoding of the typing judgment Γ ` t : τ is a dependent datatype,
DER : (ctx, tm, tp, int) → prop, where the last index is a measure of the size
of the typing derivation. The constructors correspond to the inference rules
in Figure 4 (where G `n t : T abbreviates DER(G, t, T, n)). The typing rule
for variables is encoded by the term constructor:

DERvar : ∀G : ctx.∀t : tm.∀T : tp.∀n : nat. (INCTX(t, T,G, n),TP0 T ) → DER(G, t, T, 0)

The context is represented as a list, so the variable lookup identifies the index
in the list that corresponds to the given variable. The typing rule for lambda-
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Encoded Typing: G `n t : T

(t, T ) ∈n G ` T type

G `0 t : T
(DERvar)

` T1 type (∀x. (x, T1) :: G `n f x : T2)

G `n+1 TMlam f : TPfun(T1, T2)
(DERlam)

G `n1
t1 : TPfun(T1, T2) G `n2

t2 : T1

G `n1+n2+1 TMapp(t1, t2) : T2

(DERapp)

Fig. 4. Encoded Typing Rules

abstraction is encoded by the following constructor:

DERlam : ∀G : ctx.∀f : tm → tm.∀T1 : tp.∀T2 : tp.∀n : nat.∀l : nat.

(TP0 T1,∀x. DER(CTXcons(x, T1, G), f x, T2, n)) →

DER(G,TMlam f,TPfun(T1, T2), n + 1)

Note that the quantification over x in the second argument of this constructor
(∀x.DER(CTXcons(x, T1, G), f x, T2, n)) guarantees that x is a metavariable
not occurring in G and thus CTXcons(x, T1, G) is a well-formed context if G
is. The typing rule for application is encoded by the following constructor:

DERapp : ∀G : ctx.∀t1 : tm.∀t2 : tm.∀T1 : tp.∀T2 : tp.∀n1 : nat.∀n2 : nat.

(DER(G, t1,TPfun(T1, T2), n1),DER(G, t2, T1, n2)) →

DER(G,TMapp(t1, t2), T2, n1 + n2 + 1)

For convenience we also define DER0(G, t, T ) ≡ ∃n : nat. DER(G, t, T, n).
This representation for typing derivations is quite interesting. The dynamic
terms inhabiting the datatype DER0(G, t, T ) are isomorphic to simply-typed
lambda-terms of Church-style in which variables are represented as de Bruijn
indices. The context G is a typed substitution, which we can decompose into a
substitution Θ = 〈t1, . . . , tm〉 (which maps the ith variable to ti for 1 ≤ i ≤ m)
and a context Γ = 〈T1, . . . , Tm〉. The datatype DER0(G, t, T ) really represents
a hypothetical judgment saying that if we have derivations of ` ti : Ti (for
1 ≤ i ≤ m) then we can form a derivation of ` t : T . As long as Θ is a list of
distinct meta-variables (say 〈x1, ..., xm〉), this is an adequate encoding of the
usual typing judgment x1 : T1, ..., xm : Tm ` t : T . We can guarantee that
a context is well-formed in this way when it is empty or when it appears in
a derivation that is a sub-derivation of one with an empty context. We are
able to prove strong normalization for terms typed in the empty context and,
since reduction under lambda is allowed, this implies strong normalization for
terms containing free variables as well.

4 Strong Normalization Proof

In this section, we formalize a proof of strong normalization of STLC based on
Tait’s method [12]. The formalized proof is nearly identical to the one in [7],
with the only exception that we use the constant c in some places where
the proof in [7] uses a variable. The cause for this exception directly results
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from HOAS being chosen for representing lambda-terms (and thus making it
difficult to manipulate object variables). The proofs for the final few lemmas
and strong normalization theorem are given in Appendix A and the entire
proof can be found on-line:

http://www.cs.bu.edu/~hwxi/ATS/EXAMPLE/LF/STLC-SN-hoas.dats

Definition 4.1 [Strong Normalization] A term t is strongly normalizing with
bound n, written SNn(t), if for all t′ such that t −→ t′ we have SNn′(t′) for
some natural number n′ < n (i.e. all reduction sequences starting from t have
length at most n). A term t is strongly normalizing, written SN0(t), if there
is some n such that SNn(t).

SNn(t) is encoded using a dependent datatype with type constructor SN :
(tm, int) → prop and one term constructor of the same name:

SN : ∀t : tm.∀n : nat.(∀t′ : tm.RED0(t, t′) → ∃n′ < n. SN(t′, n′)) → SN(t, n)

We encode SN0(t) by defining SN0(t) ≡ ∃n : nat. SN(t, n). Strong normaliza-
tion is closed under forward and backward reduction.

Lemma 4.2 If SNn(t) and t −→ t′ then SNn′(t′) for some n′ < n.

Proof. This follows directly from the definition of SNn(t). 2

The ATS/LF proof for this lemma is given as follows:

prfn forwardSN {t:tm, t’:tm, n:nat}

(sn: SN(t, n), red: RED0(t, t’)) : [n’:nat | n’ < n] SN(t’, n’) =

let prval SN (fsn) = sn in fsn red end

The keyword prval here is similar to the keyword val in ML.

Lemma 4.3 If for all t′, t −→ t′ implies SN0(t′), then SN0(t).

Proof. For any t there are a finite number of t′ such that t −→ t′. For each of
these t′ we have SNn′(t′) for some n′. If we take n to be one plus the maximum
of these n′ (which exists because there are only finitely many) then we have
SNn(t) so SN0(t). 2

This is an obvious consequence of the definition of SN0 and the fact that each
term has a finite number of different reducts, and formalizing it in ATS/LF is
entirely uninspiring (as the argument is purely set-theoretic). So we use the
keyword dynprf to introduce it as an unproven lemma:

dynprf backwardSN : {t:tm} ({t’:tm} RED0 (t, t’) -> SN0 t’) -> SN0 t

This is the only unproven lemma in the entire formalization.
Attempting to directly prove strong normalization of well-typed terms by

induction on typing derivations does not work because the induction hypoth-
esis is not strong enough to handle application terms. In order to make the
proof go through, we strengthen the induction hypothesis using the notion of
reducibility, introduced by Tait [12].

Definition 4.4 [Reducibility] A lambda-term t is reducible at a type τ , writ-
ten Rτ (t), if:

(i) τ is a base type (that is, B in our case) and SN0(t), or
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(ii) τ is τ1 → τ2 and for all t′, Rτ1
(t′) implies Rτ2

(t t′).

It should be emphasized that Rτ (t) does not necessarily imply that t can be
assigned the type τ . As a matter of fact, we have RB(ω) for ω = λx.xx
according to the definition. Also, it is clear that we cannot have RB→B(ω)
as it would otherwise imply RB(ωω), which is a contradiction since ωω is not
normalizing.

The definition in ATS/LF uses a dependent datatype with type constructor
R : (tm, tp) → prop and two term constructors:

Rbas : ∀t : tm. SN0 t → R(t,TPbas)

Rfun : ∀t : tm.∀T1 : tp.∀T2 : tp.

(∀t1 : tm.R(t1, T1) → R(TMapp(t, t1), T2)) → R(t,TPfun(T1, T2))

This is not a positive datatype because there is a negative occurrence of R in
the function case. However, this definition is still well-founded because the tp
index is structurally decreasing in all recursive occurrences (both positive and
negative). This allows us to view the datatype as being built up inductively
in levels stratified by the tp index. In particular, this means that when we are
building the level corresponding to TPfun(T1, T2), the levels corresponding to
T1 and T2 are already complete and thus the set of functions from level T1 to
level T2 (which are the possible arguments of Rfun) is also complete.

We begin by proving some important properties of the reducibility predi-
cate. We first define neutral terms as follows.

Definition 4.5 [Neutrality] A term is neutral if it is either the constant c or
an application of the form t t′.

This is defined in ATS/LF as a dependent datatype with type constructor
NEU : tm → prop and term constructors:

NEUcst : NEU(TMcst) NEUapp : ∀t : tm.∀t′ : tm. NEU(TMapp(t, t′))

We can now state and prove four important properties of reducibility, which
are given the names CR 1-4 in [7]:

CR 1: If Rτ (t) then SN0(t),

CR 2: If Rτ (t) and t −→ t′ then Rτ (t
′),

CR 3: If t is neutral and for all t′, t −→ t′ implies Rτ (t
′), then Rτ (t), and

CR 4: Rτ (c) for any τ , which is a special case of CR 3.

We first prove CR 2 on its own, and then prove CR 1, 3 and 4 simultaneously.

Lemma 4.6 (CR 2) Proof. By induction on τ :

case: τ = B, so we have SN0(t). By closure of strong normalization under
forward reduction (Lemma 4.2) we have SN0(t′), so RB(t′).

case: τ = τ1 → τ2, so for all t1, Rτ1
(t1) implies Rτ2

(t t1). Fix any t1 such
that Rτ1

(t1), then we have Rτ2
(t t1) and since t t1 −→ t′ t1, by induction

hypothesis, we have Rτ2
(t′ t1). Therefore Rτ1→τ2

(t′).
2
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The proof is encoded in ATS/LF as follows:

prfun cr2 {t:tm, t’:tm, T:tp, n:nat} .<n>.

(tp: TP (T, n), r: R(t, T), rd : RED0(t, t’)): R(t’, T) =

case* r of // [case*] indicates exhaustive pattern matching

| Rbas (sn) => Rbas (forwardSN (sn, rd))

| Rfun{_, T1, _} (fr) => let

prval TPfun (_, tp2) = tp

in

Rfun(lam {t1:tm} (r:R(t1,T1)) => cr2(tp2, fr r, REDapp1 rd))

end

This proof function is a fairly straightforward encoding of the argument, taking
the extra argument of type TP(T, n) to provide a termination metric. The
proof has a slightly unusual feature: the Rfun case binds the static argument
T1 in order to be able to provide the type for the lambda-bound variable r.

Lemma 4.7 (CR 1, 3, 4) Proof. We prove CR 1, CR 3, CR 4, in that
order, by induction on τ . The argument for CR 3 makes use of a nested
induction, and CR 4 follows directly from CR 3 at each level.

case: τ = B. Reducibility at base types is just strong normalization.
CR 1: Direct from the definition of RB(·).
CR 3: By Lemma 4.3.

case: τ = τ1 → τ2.
CR 1: Let t be a term with Rτ1→τ2

(t). By CR 4 induction hypothesis,
Rτ1

(c), therefore Rτ2
(t c). By CR 1 induction hypothesis t c is SN and

any reduction of t induces a reduction of t c, so t is SN.
CR 3: Let t be neutral such that for all t′ with t −→ t′ we have Rτ1→τ2

(t′).
Let t1 be a term such that Rτ1

(t1), we need to show Rτ2
(t t1). By CR

1 induction hypothesis we know SNn(t1) for some n and we continue by
nested induction on n. t t1 is neutral, so if we show that all terms that
it reduces to are reducible, then we can use CR 1 induction hypothesis to
conclude Rτ2

(t t1). Suppose t t1 −→ t2:
case: t2 = t′ t1, with t −→ t′. We know Rτ1→τ2

(t′) and Rτ1
(t1), so we

have Rτ2
(t′ t1).

case: t2 = t t′1 with t1 −→ t′1. By CR 2 induction hypothesis Rτ1
(t′1), and

by Lemma 4.2, SNn′(t′1) for some n′ < n, so by induction Rτ2
(t t′1).

These are the only possibilities because t is neutral.
2

The full ATS/LF proof of this is omitted for brevity; it consists of 4 mutually
recursive proof functions:

cr1 : ∀t : tm.∀T : tp.∀n : nat. (TP(T, n),R(t, T )) → SN0(t)

cr3 : ∀t : tm.∀T : tp.∀n : nat. (NEU(t),TP(T, n),∀t′. RED0(t, t′) → R(t′, T )) → R(t, T )

cr3a : ∀t : tm.∀t1 : tm.∀T1 : tp.∀T2 : tp.∀m : nat.∀n1 : nat.∀n2 : nat.

(TP(T1, n1),TP(T2, n2),NEU(t),R(t1, T1),SN(t1,m),

∀t′. RED0(t, t′) → R(t′,TPfun(T1, T2))) → R(TMapp(t, t1), T2)

cr4 : ∀T : tp.∀n : nat. TP(T, n) → R(TMcst, T )
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Each of these functions takes arguments of the form TP(T, n) in order to pro-
vide a metric that corresponds to structural recursion on T . The auxiliary
lemma cr3a performs the inner induction on the length of the strong normal-
ization bound of t1, which is provided by its argument of type SN(t1,m).

Lemma 4.8 If for all reducible t at type τ1, Rτ2
(t1[t/x]), then Rτ1→τ2

(λx.t1).

Proof. Assume Rτ1
(t). By CR 1, we know there is n1 such that SNn1

(t1[c/x])
(and therefore SNn1

(t1)) and n2 such that SNn2
(t). We now proceed by induc-

tion on n1 +n2 to prove that Rτ2
((λx.t1) t). We will show that (λx.t1) t −→ t′

implies Rτ2
(t′) for every t′. There are three possibilities.

• (λx.t1) t reduces to t1[t/x], which is reducible by the hypothesis of the lemma.

• (λx.t1) t reduces to (λx.t1) t′ with t −→ t′. By CR 2, Rτ1
(t′) and by

Lemma 4.2 there is n′ < n with SNn′(t′), and thus we have Rτ2
((λx.t1) t′)

by induction.

• (λx.t1) t reduces to (λx.t′1) t with t1 −→ t′1. By CR 2, t′1[t/x] is reducible for
any reducible t and the strong normalization bound of (λx.t′1) is less than
(λx.t1). So (λx.t′1) t is reducible by induction.

Note that (λx.t1) t is neutral. By CR 3, we have Rτ2
((λx.t1) t). Since

Rτ2
((λx.t1) t) holds for every t satisfying Rτ1

(t), we have Rτ1→τ2
(λx.t1) by

definition. 2

The formalization of this proof in ATS/LF is a total recursive function with
the type:

absSound : ∀f : tm → tm.∀T1 : tp.∀T2 : tp.

(TP0(T1),TP0(T2),∀t : tm.R(t, T1) → R(f t, T2)) →

R(TMlam f,TPfun(T1, T2))

The proof closely follows the informal one given above, taking additional ar-
guments of types TP0(T1) and TP0(T2), which are needed in calls to cr2 and
cr3. It also makes a call to the proof function reduceFun to perform the inner
induction on the sum of the normalization bounds (n1 + n2 in the informal
proof).

Now we can prove the main reducibility lemma which states that, given a
term t, with a typing Γ ` t : T and a substitution Θ such that for x ∈ dom(Γ),
Θ(x) is reducible at type Γ(x), then t[Θ], the result of applying Θ to t, is
reducible at type T .

Lemma 4.9 Let t be a term with x1 : τ1, . . . , xn : τn ` t : τ . If t1, . . . , tn are
terms such that Rτi

(ti) (for 1 ≤ i ≤ n) then Rτ (t[t1/x1, . . . , tn/xn]).

Proof. By induction on the derivation of x1 : τ1, . . . , xn : τn ` t : τ . We write
t[t/x] for t[t1/x1, . . . , tn/xn].

t = xi: Then t[t/x] = ti and τ = τi and by hypothesis Rτi
(ti).

t = t′ t′′: Then, by induction hypothesis, Rτ ′
→τ (t

′[t/x]) and Rτ ′(t′′[t/x]). By
the definition of Rτ ((t

′[t/x]) (t′′[t/x])) and (t′[t/x]) (t′′[t/x]) = (t′ t′′)[t/x].

t = λx.t′: (assume x is fresh with respect to x1, . . . , xn and t1, . . . , tn) Then τ
is of the form τ ′′ → τ ′. Fix t′′ such that Rτ ′′(t′′). By induction hypothesis,

10
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Rτ ′(t′[t/x, t′′/x]). By Lemma 4.8, Rτ ′′
→τ ′(λx.t′[t/x]), and by the freshness

of x, (λx.t′[t/x]) = (λx.t′)[t/x].
2

When we prove this lemma in ATS/LF, the higher-order encoding buys us
quite a bit over a first-order encoding. Because of HOAS, we do not have to
think about freshness of variables nor do we have to explicitly prove that the
substitution commutes with the lambda binding when handling the lambda
case. Lemma 4.9 is encoded in ATS/LF as a total function, which we omit
for brevity:

reduceLemma : ∀G : ctx.∀t : tm.∀T : tp.∀n : nat. (DER(G, t, T, n),RS0(G)) → R(t, T )

Note that RS0(G) is a datatype that associates with each (ti, Ti) in G, a proof
of the reducibility predicate R(ti, Ti). Also note that we take advantage of
the representation of contexts as typed substitutions to state the lemma. It
is now a simple matter to prove strong normalization for closed terms using
Lemma 4.9 and CR 1.

normalize : ∀t : tm.∀T : tp. DER0(CTXnil, t, T ) → SN0(t)

It is easy to see that this implies strong normalization for open terms as well,
because any reduction on a term with free variables corresponds to a reduction
in the closed term formed by abstracting these variables.

5 Strong Normalization for System F

We have also formalized a proof of strong normalization for (the Curry-style
version of) System F, which can be found on-line:

http://www.cs.bu.edu/~hwxi/ATS/EXAMPLE/LF/F-SN-hoas.dats

The terms and reduction rules for the language are the same as for STLC.
The types of System F are given by:

τ ::= α | τ1 → τ2 | ∀α.τ

The types are encoded with a first-order representation using de Bruijn indices:

TPvar : int → tp TPfun : (tp, tp) → tp TPall : tp → tp

This representation means that we have to spend a great deal of effort proving
lemmas about renumbering and substitution. However, we do not know if it
is possible to prove strong normalization using a higher-order representation
for types.

We extend the type well-formedness judgment ` τ type to include a con-
text: ∆ ` τ type, and list the new rules as follows:

α ∈ ∆
∆ ` α type

(TPvar)
∆ ` τ1 type ∆ ` τ2 type

∆ ` τ1 → τ2 type
(TPfun)

∆, α ` τ type

∆ ` ∀α. τ type
(TPall)

Typing judgments are extended to include the extra context and there are
also two additional typing rules for handing type abstraction and application:

∆, α; Γ ` t : τ

∆;Γ ` t : ∀α.τ
(DERtabs)

∆; Γ ` t : ∀α.τ ∆ ` τ1 type

∆;Γ ` t : τ [τ1/α]
(DERtapp)

11
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where DERtabs has the side condition that α is not free in Γ.
The approach of directly defining reducibility does not work for System

F because we cannot make the argument that the datatype representing re-
ducibility is inductive on the tp index. For this reason we need to generalize
to reducibility candidates which are all the predicates satisfying CR 1, CR 2
and CR 3. We encode predicates as static terms of sort tm → prop (we define
rc ≡ tm → prop for convenience) and we define propositions:

CR1(R) ≡ ∀t : tm. R(t) → SN0(t)
CR2(R) ≡ ∀t : tm.∀t′ : tm. (R(t), RED0(t, t′)) → R(t′)
CR3(R) ≡ ∀t : tm. (NEU(t),∀t′ : tm.RED0(t, t′) → R(t′)) → R(t)
RC(R) ≡ (CR1(R), CR2(R), CR3(R))

Strong normalization (SN0) is defined just as before. It is straightforward to
show that SN0 meets the three conditions:

sn is rc : RC(SN0)

As a consequence of CR3, any reducibility candidate holds for the constant:

cr cst : ∀R : rc. RC(R) → R(TMcst)

The crux of the reducibility candidates is to define interpretations for types
as reducibility candidates and to show that whenever a term t can be given
a type τ , it is in the reducibility candidate that interprets τ . The fact that
a term is strongly normalizing if it is in a reducibility candidate gives us the
final result.

In order to interpret types as candidates, we define the arrow and universal
quantification constructors for reducibility candidates:

RCFUN0(R1, R2)(t) ≡ ∀t1 : tm. R1(t1) → R2(TMapp(t, t1))

RCALL0(RF )(t) ≡ ∀R : rc. RC(R) → (RF (R))(t)

And we prove that these constructors preserve candidates:

rcfun is rc : ∀R1 : rc.∀R2 : rc. (RC(R1),RC(R2)) → RC(RCFUN0(R1, R2))

rcall is rc : ∀RF : rc → rc. (∀R : rc.RC(R) → RC(RF (R))) → RC(RCALL0(RF ))

It is an important property that the typing rule for lambda is sound with
respect to the arrow on candidates:

abs lemma : ∀R1 : rc.∀R2 : rc.∀f : tm → tm.

(RC(R1),RC(R2),∀t : tm. R1(t) → R2(f t)) → RCFUN0(R1, R2)(TMlamf)

To provide a context for parameters in reducibility candidates, we define the
sort rcs for lists of reducibility candidates:

RCSnil : rcs RCScons : (rc, rcs) → rcs

In order to lookup parameters in the list we use a datatype (similar to INCTX)
with type constructor RCSI : (rcs, rc, int) → prop and term constructors:

RCSIone : ∀R : rc.∀C : rcs. RCSI(RCScons(R,C), R, 0)

RCSIshi : ∀R : rc.∀R′ : rc.∀C : rcs.∀n : nat.

RCSI(C,R, n) → RCSI(RCScons(R′, C), R, n + 1)

12
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We actually use rcs to represent ∆ in typing derivations, which have type
constructor DER : (rcs, ctx, tm, tp, int) → prop. Only the length of the rcs
term matters in derivations (the actual predicates in the list are not reflected
in the dynamic representation), and derivations with an empty Γ and any ∆
are adequately encoded. The use of rcs in DER (rather than simply a natural
number bound on the indices) makes some of the lemmas easier to state.

Next, we define the interpretation of types as reducibility candidates with
parameters. For this, we use a dependent datatype with type constructor
TPI : (rcs, tp, rc, int) → prop, and term constructors:

TPIvar : ∀C : rcs.∀T : tp.∀R : rc.∀n : nat. RCSI(C,R, n) → TPI(C,TPvar n,R, 0)

TPIfun : ∀C : rcs.∀T1 : tp.∀T2 : tp.∀R1 : rc.∀R2 : rc.∀n1 : nat.∀n2 : nat.

(TPI(C, T1, R1, n1),TPI(C, T2, R2, n2)) →

TPI(C,TPfun(T1, T2),RCFUN0(R1, R2), n1 + n2 + 1)

TPIall : ∀C : rcs.∀T : tp.∀RF : rc → rc.∀n : nat.

(∀R : rc.TPI(RCScons(R,C), T,RF (R), n)) →

TPI(C,TPall(T ),RCALL0(RF ), n + 1)

For convenience we define TPI0(C, T,R) ≡ ∃n : nat.TPI(C, T,R, n). In order
to prove that the interpretation of a type is a reducibility candidate if all
the free variables are interpreted by reducibility candidates, we introduce a
datatype RCS : (rcs, int) → prop such that RCS(C, n) is a sequence of proofs
of RC(R) for each R in C. We can then prove the desired lemma:

tpi is rc : ∀C : rcs.∀T : tp.∀R : rc.∀n : nat. (RCS0 C,TPI(C, T,R, n)) → RC(R)

where RCS0(C) ≡ ∃n : nat.RCS(C, n).
The last major lemma we need is a substitution lemma on interpretations of

types, which we omit for brevity. In order to state the main lemma, we need to
define an environment mapping terms to proofs showing that the terms in the
appropriate candidates. For this we use the datatype ETA : (rcs, ctx, int) →
prop where ETA(C,G,m) is a sequence of pairs of (TPI0(C, T,R), R(t)) for
each (t, T ) in G. The main lemma is:

der rc lemma : ∀G : ctx.∀t : tm.∀T : tp.∀n : nat.∀C : rcs.∀m : nat.

(DER(C,G, t, T, n),ETA(C,G,m),RCS0 C) →

∃R : rc. (TPI0(C, T,R), R(t))

The proof of this lemma is quite involved, mostly due to manipulations of
de Bruijn indices. The final theorem is then easy to prove:

der sn : ∀t : tm.∀T : tp.DER0(RCSnil,CTXnil, t, T ) → SN0(t)

This simply means that every well-typed expression in System F is strongly
normalizing.

6 Related Work

There have been several formalizations of proofs of normalization for STLC
in the past. Abel [1] encodes a proof of weak normalization for STLC in
Twelf. As in our proof, the object language is represented using HOAS. How-
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ever, normalization is proved using an inductive characterization of the weakly
normalizing terms, following Joachimski and Matthes [8], rather than Tait’s
method of reducibility predicates. Sarnat and Schürmann [11] have recently
given a proof of weak normalization directly in Twelf using a logical relation.
They encode minimal first-order logic which is then used in the definition
of the logical relation. It is not clear whether their technique would allow
a similar encoding of strong normalization. Berger, Berghofer, Letouzy and
Schwichtenberg [3] give proofs of strong normalization for STLC using Tait’s
method in three systems: Isabelle/HOL, Coq, and Minilog. They also ana-
lyze the programs that can be extracted from the formal proofs. However,
the formalizations described all make use of first-order representations (using
either de Bruijn indices or names for variables) rather than HOAS and also
start from a large number of unproven axioms (eleven).

Strong normalization for System F has previously been formalized by Al-
tenkirch [2] using the Lego system. His formalization uses the de Bruijn en-
coding for both terms and types, and because of this, is significantly longer
and more complicated than our proof. Even though our formalization con-
tains full proof terms, rather than tactic-based scripts, it is shorter by about
a factor of two.

7 Conclusion

We have presented formalizations of proofs of strong normalization for STLC
and System F which use HOAS and Tait’s and Girard’s methods (respec-
tively). The unique features of ATS/LF (in particular the separation between
statics and dynamics) allow for the encoding of powerful logical relations ar-
guments over the simple and elegant language encodings enabled by HOAS.
In these proofs we found that HOAS made it much easier to deal with the
mundane details of naming and substitution, which often take the majority
of the effort in first-order encoding. 4 As a result, we are able to define the
syntax and semantics of STLC and prove strong normalization as described,
all in less than 300 lines of commented ATS/LF code! For System F, the proof
is likewise short, under 900 lines.
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Types, in: J. E. Fenstad, editor, Proceedings of the Second Scandinavian Logic
Symposium, Studies in Logic and the Foundations of Mathematics 63 (1971),
pp. 63–92.

[7] Girard, J.-Y., Y. Lafont and P. Taylor, “Proofs and Types,” Cambridge Tracts
in Theoretical Computer Science 7, Cambridge University Press, Cambridge,
England, 1989, xi+176 pp.

[8] Joachimski, F. and R. Matthes, Short proofs of normalization for the simply-
typed lambda-calculus, permutative conversions and Gödel’s T, Arch. Math. Log.
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A ATS/LF proof of final lemmas and theorem

...

// application reducibility lemma
prfun reduceFun

{f:tm->tm, t:tm, T1:tp, T2:tp, n1:nat, n2:nat} .<n1+n2>.
(tp1: TP0 T1, tp2: TP0 T2,
sn1: SN(TMlam f, n1), sn2:SN(t, n2), r1:R(t, T1),
fr2: {t:tm} R(t, T1) -> R(f t, T2)): R(TMapp(TMlam f, t), T2) = let

prval r1’ = fr2 r1
prfn fr {t’:tm} (red:RED0(TMapp(TMlam f, t), t’)) : R(t’, T2) = case* red of
| REDapp1(red’) =>
let

prval REDlam {f, f’,_} fred’ = red’
prfn fr2’ {t:tm} (r: R(t, T1)): R(f’ t, T2) =
cr2(tp2, fr2 r, fred’{t})

in
reduceFun(tp1, tp2, forwardSN(sn1, red’), sn2, r1, fr2’)

end
| REDapp2(red’) =>
reduceFun(tp1, tp2, sn1, forwardSN(sn2, red’), cr2(tp1, r1, red’), fr2)

| REDapp3() => r1’
in

cr3(NEUapp, tp2, fr)
end

// the abstraction rule is sound with respect to redicible terms
prfn absSound {f:tm->tm, T1:tp, T2:tp}

(tp1: TP0 T1, tp2: TP0 T2,
frr : {t:tm} R(t, T1) -> R(f t, T2)) : R(TMlam f, TPfun(T1, T2)) =
let

prfn fr {t:tm} (rt: R(t, T1)) : R(TMapp(TMlam f, t), T2) =
let

prval snt = cr1(tp1, rt)
prval snf = lamSN(cr1 (tp2, frr {TMcst} (cr4 tp1)))

in
reduceFun (tp1, tp2, snf, snt, rt, frr)

end
in

Rfun(fr)
end

// pick specified reducibility predicate from the sequence
prfun rGet {t:tm, T:tp, G:ctx, n:nat} .<n>.

(i:INCTX(t,T,G,n),rs: RS0(G)) : R(t,T) = case* i of
| INCTXone() => (case* rs of RScons(r,_) => r)
| INCTXshi i => (case* rs of RScons(_,rs) => rGet(i, rs))

// The assigned type can be extracted from a derivation
prfun der2tp {G:ctx, t:tm, T:tp, n:nat} .<n>. (der: DER(G,t,T,n)): TP0 T =

case* der of
| DERvar (_, tp) => tp
| DERlam (tp1, derf) => let prval tp2 = der2tp derf in TPfun (tp1,tp2) end
| DERapp (der1, der2) => let prval TPfun (_, tp2) = der2tp der1 in tp2 end

// main lemma
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prfun reduceLemma {G:ctx, t:tm, T:tp, n:nat} .<n>.
(der: DER(G,t,T,n), rs: RS0 G): R (t, T) =
case* der of
| DERvar (i,_) => rGet (i, rs)
| DERlam {_,f,T1,T2,_} (_, derf) =>
let

prval TPfun{T1, T2, s1, s2} (tp1, tp2) = der2tp der
prfn gr {t:tm} (r: R(t,T1)): R(f t, T2) = let
prval rs’ = RScons (r, rs)
prval r’ = reduceLemma (derf{t}, rs’)

in
r’

end
prfn fr {t:tm} (r: R(t,T1))
: R(TMapp(TMlam f, t), T2) = let
prval lamf_red = absSound(tp1, tp2, gr)
prval Rfun(red_imp) = lamf_red

in
red_imp r

end
in

Rfun fr
end

| DERapp (der1, der2) =>
let

prval r1 = reduceLemma(der1, rs)
prval Rfun fr = r1
prval r2 = reduceLemma(der2, rs)

in
fr r2

end

// all typable terms are reducible
prfn reduce {t:tm, T:tp} (der: DER0 (CTXnil,t,T)): R (t,T) =

reduceLemma(der, RSnil())

// the final theorem
prfn normalize {t:tm, T:tp} (der: DER0 (CTXnil,t,T)): SN0 t =

cr1(der2tp der, reduce der)
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