
Dependent Types for Program Termination Verification ∗

Hongwei Xi

Computer Science Department

Boston University

111 Cummington Street

Boston, MA 02215

hwxi@cs.bu.edu

Abstract

Program termination verification is a challenging research subject of significant practical impor-
tance. While there is already a rich body of literature on this subject, it is still undeniably a difficult
task to design a termination checker for a realistic programming language that supports general
recursion. In this paper, we present an approach to program termination verification that makes use
of a form of dependent types developed in Dependent ML (DML), demonstrating a novel application
of such dependent types to establishing a liveness property. We design a type system that enables
the programmer to supply metrics for verifying program termination and prove that every well-typed
program in this type system is terminating. We also provide realistic examples, which are all verified
in a prototype implementation, to support the effectiveness of our approach to program termination
verification as well as its unobtrusiveness to programming. The main contribution of the paper
lies in the design of an approach to program termination verification that smoothly combines types
with metrics, yielding a type system capable of guaranteeing program termination that supports a
general form of recursion (including mutual recursion), higher-order functions, algebraic datatypes,
and polymorphism.

1 Introduction

Programming is notoriously error-prone. As a consequence, a great number of approaches have been
developed to facilitate program error detection. In practice, the programmer often knows certain
program properties that must hold in a correct implementation; it is therefore an indication of program
errors if the actual implementation violates some of these properties. For instance, various type systems
have been designed to detect program errors that cause violations of the supported type disciplines.

It is common in practice that the programmer often knows for some reasons that a particular pro-
gram should terminate if implemented correctly. This immediately implies that a termination checker
can be of great value for detecting program errors that cause nonterminating program execution. How-
ever, termination checking in a realistic programming language that supports general recursion is often
prohibitively expensive given that (a) program termination in such a language is in general undecidable,
(b) termination checking often requires interactive theorem proving that can be too involved for the

∗This work is partially supported by NSF grants no. CCR-0081316 and no. CCR-0092703 and a grant from the Ohio
Board of Regents. An extended abstract of the paper has been previously published in the proceedings of the sixteenth
IEEE Symposium on Logic in Computer Science (LICS 2001).

1

programmer, (c) a minor change in a program can readily demand a renewed effort in termination
checking, and (d) a large number of changes are likely to be made in a program development cycle. In
order to design a termination checker for practical use, these issues must be properly addressed.

There is already a rich body of literature on termination verification. Most approaches to auto-
mated termination proofs for either programs or term rewriting systems (TRSs) use various heuris-
tics, some of which can be highly involved, to synthesize well-founded orderings (e.g., various path
orderings (Dershowitz), polynomial interpretation (BenCherifa and Lescanne), etc.). While these
approaches are mainly developed for first-order languages, some work in higher-order settings can also
be found (e.g., (Jouannaud and Rubio)). When a program that should be terminating if implemented
correctly, cannot be proved terminating, it is often difficult for the programmer to determine whether
this is caused by a program error or by a limitation of the heuristics involved. Therefore, such auto-
mated approaches are likely to offer little help in detecting program errors that cause nonterminating
program execution. In addition, automated approaches often have difficulty handling realistic (not
necessarily large) programs.

The programmer can also prove program termination in various (interactive) theorem proving sys-
tems such as NuPrl (Constable et al.), Coq (Dowek et al.), Isabelle (Paulson) and PVS (Owre et al.).
This is a viable practice and various successes have been reported. However, the main problem with this
practice is that the programmer may often need to spend too much time on proving the termination of
a program compared with the time spent on simply implementing the program. In addition, a renewed
effort may be required each time when some changes, which are likely in a program development cycle,
are made to the program. Therefore, the programmer can often feel hesitant to adopt (interactive)
theorem proving for detecting program errors in general programming.

We are primarily interested in finding a middle ground. In particular, we are interested in forming a
mechanism in a programming language that allows the programmer to provide key information needed
for establishing program termination and then automatically verifies that the provided information
indeed suffices. An analogy would be like a theorem prover that allows the user to provide induc-
tion hypotheses in inductive theorem proving and then proves theorems with the provided induction
hypotheses. Clearly, the challenging question is how such key information for establishing program
termination can be formalized and then expressed. The main contribution of this paper lies in our
attempt to address the question by presenting a design that allows the programmer to provide through
dependent types such key information in a (relatively) simple and clean manner.

It is common in practice to prove the termination of recursive functions with metrics. Roughly
speaking, we attach a metric in a well-founded ordering to a recursive function and verify that the
metric is always strictly decreasing when a recursive function call is made. In this paper, we present
an approach that uses the dependent types developed in DML (Xi and Pfenning ; Xi), where general
recursion is allowed, to carry metrics for proving program termination. We form a type system in
which metrics can be encoded into types and prove that every well-typed program is terminating. It
should be emphasized that we are not here advocating the design of a programming language in which
only terminating programs can be written. Instead, we are interested in designing a mechanism in a
programming language, which, if the programmer chooses to use it, can facilitate program termination
verification. This is to be manifested in that the type system we form can be smoothly embedded
into the type system of DML. In the current prototype implementation of DML, the termination of a
function is verified only if the programmer indicates so (with some special syntax). More explanation
can be found in Section 5.2. We now illustrate the basic idea with a concrete example before going into
further details.

In Figure 1, an implementation of the Ackermann function is given. The withtype clause is a

2

fun ack m n =

if m = 0 then n+1

else if n = 0 then ack (m-1) 1

else ack (m-1) (ack m (n-1))

withtype

{i:nat,j:nat} <i,j> => int(i) -> int(j) -> [k:nat] int(k)

Figure 1: An implementation of the Ackermann function

type annotation, which states that for natural numbers i and j, this function takes an argument of
type int(i) and another argument of type int(j), and returns a natural number as a result. Note
that we have refined the usual integer type int into infinitely many singleton types int(a) for a =
0, 1,−1, 2,−2, . . . such that int(a) is precisely the type for integer expressions with value equal to a.
We write {i:nat,j:nat} for universally quantifying over index variables i and j of sort nat , that is,
the sort for index expressions with values being natural numbers. Also, we write [k:nat] int(k) for
Σk : nat.int(k), which represents the sum of all types int(k) for k = 0, 1, 2, The novelty here is
the pair 〈i, j〉 in the type annotation, which indicates that this is the metric to be used for termination
checking. We now informally explain how termination checking is performed in this case: assume that i
and j are two natural numbers and m and n have types int(i) and int(j), respectively, and attach the
metric 〈i, j〉 to ack m n; note that there are three recursive function calls to ack in the body of ack; we
attach the metric 〈i−1, 1〉 to the first ack since m−1 and 1 have types int(i−1) and int(1), respectively;
similarly, we attach the metric 〈i − 1, k〉 to the second ack, where k is assumed to be some natural
number, and the metric 〈i, j − 1〉 to the third ack; it is obvious that 〈i− 1, 1〉 < 〈i, j〉, 〈i− 1, k〉 < 〈i, j〉
and 〈i, j − 1〉 < 〈i, j〉 hold, where < is the usual lexicographic ordering on pairs of natural numbers; we
thus claim that the function ack is terminating (by a theorem proved in this paper). Note that although
this is a simple example, its termination cannot be proved with (lexicographic) structural ordering (as
the semantic meaning of both addition + and subtraction − is needed, which is captured by the type
system in our case).1

More realistic examples are to be presented in Section 5.1, involving dependent datatypes (Xi
), mutual recursion, higher-order functions and polymorphism. The reader may read some of these
examples before studying the sections on technical development so as to get a feel as to what can
actually be handled by our approach.

Combining metrics with the dependent types in DML poses a number of theoretical and pragmatic
questions. We briefly outline our results and design choices.

The first question that arises is to decide what metrics we should support. Clearly, the variety of
metrics for establishing program termination is endless in practice. In this paper, we only consider
metrics that are tuples of index expressions of sort nat and use the usual lexicographic ordering to
compare metrics. The main reasons for this decision are that (a) such metrics are commonly used in
practice to establish termination proofs for a large variety of programs and (b) constraints generated
from comparing such metrics can be readily handled by the constraint solver already built for type-
checking DML programs. Note that the usual structural ordering on first-order terms can be obtained
by attaching to the term the number of constructors in the term, which can be readily accomplished

1There is an implementation of the Ackermann function that involves only primitive recursion (of higher types) and
can thus be easily proved terminating, but the point we drive here is that this particular implementation can be proved
terminating with our approach.

3

by using the dependent datatype mechanism in DML. However, we are currently unable to capture
structural ordering on higher-order terms.

The second question is about establishing the soundness of our approach, that is, proving every well-
typed program in the type system we design is terminating. Though the idea mentioned in the example
of the Ackermann function seems intuitive, this task is far from being trivial because of the presence
of higher-order functions. The reader may take a look at the higher-order example in Section 5.1
to understand this point. We seek a method that can be readily adapted to handle various common
programming features when they are added, including mutual recursion, datatypes, polymorphism, etc.
This naturally leads us to the reducibility method (Tait). We are to form a notion of reducibility for
the dependent types extended with metrics, in which the novelty lies in combining the usual notion
of reducibility with metrics. This formation, which makes it suitable to handle general recursion,
constitutes the main technical contribution of the paper.

The third question is about integrating our termination checking mechanism with DML. In practice,
it is common to encounter a case where the termination of a function f depends on the termination
of another function g, whose termination, unfortunately, is not proved for various reasons, e.g., it is
beyond the reach of the adopted mechanism for termination checking or the programmer is simply
unwilling to spend the effort proving it. Our approach is designed in a way that allows the programmer
to provide a metric in this case for verifying the termination of f conditional on the termination of g,
which can still be of great use for detecting program errors.

The presented work builds upon our previous work on the use of dependent types in practical
programming (Xi and Pfenning ; Xi). While the work has its roots in DML, it is largely unclear, a
priori, how dependent types in DML can be used for establishing program termination. We thus believe
that it is a significant effort to actually design a type system that combines types with metrics and
then prove that the type system guarantees program termination. This effort is further strengthened
with a prototype implementation and a variety of verified examples.

The rest of the paper is organized as follows. We form a language MLΠ,Σ
0 in Section 2, which

essentially extends the simply typed call-by-value λ-calculus with a form of dependent types, developed
in DML, and recursion. We then extend MLΠ,Σ

0 to MLΠ,Σ
0,� in Section 3, combining metrics with types,

and prove that every well-typed program in MLΠ,Σ
0,� is terminating. In Section 4, we enrich MLΠ,Σ

0,� with
some significant programming features such as datatypes, mutual recursion and polymorphism. We
present some examples in Section 5.1, illustrating how our approach to program termination verification
can be effectively applied in practice. Lastly, we mention some related works and potential future
research questions and then conclude.

2 ML
Π,Σ
0

We start with a language MLΠ,Σ
0 , which essentially extends the simply typed call-by-value λ-calculus

with a form of dependent types and (general) recursion.

2.1 Syntax

The syntax for MLΠ,Σ
0 is given in Figure 2. We fix an integer domain and restrict index expressions,

namely, the expressions that can be used to index a type, to this domain. This is a sorted domain
and subset sorts can be formed. For instance, we use nat as an abbreviation for the subset sort
{a : int | a ≥ 0}. We use if (P, i1, i2) for an index expression that equals i1 if P holds, and equals i2
otherwise. We use δ(~ı) for a base type indexed with a sequence of index expressions ~ı, which may be

4

index constants
cI ::= · · · | −2 | −1 | 0 | 1 | 2 | · · ·

index expressions
i ::= a | cI | i1 + i2 | i1 − i2 | i1 ∗ i2 | i1/i2 | i1 mod i2 | if (P, i1, i2)

index propositions
P ::= i1 < i2 | i1 ≤ i2 | i1 > i2 | i1 ≥ i2 | i1 = i2 | i1 6= i2 |

P1 ∧ P2 | P1 ∨ P2

index sorts
γ ::= int | {a : γ | P}

index variable contexts
φ ::= · | φ, a : γ | φ, P

index constraints
Φ ::= P | P ⊃ Φ | ∀a : γ.Φ

types
τ ::= δ(~ı) | 1 | τ1 ∗ τ2 | τ1 → τ2 | Π~a : ~γ.τ | Σa : γ.τ

contexts
Γ ::= · | Γ, x : τ | Γ, f : τ

constants
c ::= (some primitive functions) |

true | false | 0 | 1 | −1 | 2 | −2 | · · ·

expressions
e ::= x | f | c | if(e, e1, e2) | λ~a : ~γ.v | e[~ı] |

〈〉 | 〈e1, e2〉 | fst(e) | snd(e) | lam x : τ.e | e1(e2) |
fun f [~a : ~γ] : τ is v | 〈〉 | 〈i | e〉 | open e1 as 〈a | x〉 in e2

values
v ::= x | c[~ı] | λ~a : ~γ.v | 〈〉 | 〈v1, v2〉 | lam x : τ.e | 〈i | v〉

Figure 2: The syntax for MLΠ,Σ
0

5

empty. For instance, bool(0) and bool(1) are types for boolean values false and true, respectively; for
each integer i, int(i) is the singleton type for integer expressions with value equal to i.

We use φ |= P for a satisfaction relation, meaning P holds under φ, that is, the formula (φ)P ,
defined below, holds in the integer domain.

(·)Φ = Φ

(φ, a : int)Φ = (φ)∀a : int .Φ

(φ, {a : γ | P})Φ = (φ, a : γ)(P ⊃ Φ)

(φ, P)Φ = (φ)(P ⊃ Φ)

For instance, the satisfaction relation

a : nat, a 6= 0 |= a − 1 ≥ 0

holds since the following formula is true in the integer domain.

∀a : int .a ≥ 0 ⊃ (a 6= 0 ⊃ a − 1 ≥ 0)

Note that the decidability of the satisfaction relation depends on the constraint domain. Although the
syntax in Figure 2 allows non-linear 2 integer constraints, in our implementation, non-linear constraints
are immediately rejected. We currently translate the problem of determining whether a given (linear)
constraint is satisfiable into some integer programming problem, for which there are various existing
methods.

We use Πa : γ.τ and Σa : γ.τ for the usual dependent function and sum types, respectively. A
type of the form Π~a : ~γ.τ is essentially equivalent to Πa1 : γ1 . . . Πan : γn.τ , where we use ~a : ~γ for
a1 : γ1, . . . , an : γn. Note that γk may contain free occurrences of aj for 1 ≤ j < k ≤ n. In practice, we
also have types of the form Σ~a : ~γ.τ , which we omit here for simplifying the presentation. In particular,
given a type constructor δ that takes index expressions ~ı of sorts ~γ to form a base type δ(~ı), we often
use δ for Σ~a : ~γ.δ(~a). For instance, bool and int stand for Σa : bool .bool(a) and Σa : int .int(a),
respectively, where the sort bool = {a : int | 0 ≤ a ≤ 1}.

We also introduce lam-variables and fix-variables in MLΠ,Σ
0 and use x and f for them, respectively.

A lambda-abstraction can only be formed over a lam-variable while recursion (via fixed point operator)
must be formed over a fix-variable. A lam-variable is a value but a fix-variable is not.

We use λ for abstracting over index variables, lam for abstracting over variables, and fun for
forming recursive functions. Note that the body after either λ or fun must be a value. We use 〈i | e〉
for packing an index i with an expression e to form an expression of a dependent sum type, and open
for unpacking an expression of a dependent sum type.

There are two forms of application. We write e[~ı] for applying e to a sequence of index expressions
and e1(e2) for applying e1 to e2. The meaning of such forms of application is to be clear after we present
the dynamic semantics of MLΠ,Σ

0 .

There are various constants in MLΠ,Σ
0 , including booleans, integers, and some primitive functions.

We use a signature Σ to assign types to constants. In general, we assume that a primitive function has
a type of the form Π~a : ~γ.τ1 → τ2, where τ1 and τ2 are ground types, that is, types that can be formed
without using either → or Π. The types of some constants are given in Figure 3. Note that the type of

2A constraint is non-linear if contains a non-linear term such as a1 ∗ a2 for some index variables a1 and a2.

6

Σ(true) = bool(1)

Σ(false) = bool(0)

Σ(n) = int(n), for n = 0, 1,−1, 2,−2, . . .

Σ(+) = Π{a1 : int , a2 : int}.int(a1) ∗ int(a2) → int(a1 + a2)

Σ(−) = Π{a1 : int , a2 : int}.int(a1) ∗ int(a2) → int(a1 − a2)

Σ(∗) = Π{a1 : int , a2 : int}.int(a1) ∗ int(a2) → int(a1 ∗ a2)

Σ(/) = Π{a1 : int , a2 : {a : int | a 6= 0}}.
int(a1) ∗ int(a2) → int(a1/a2)

Σ(mod) = Π{a1 : int , a2 : {a : int | a 6= 0}}.
int(a1) ∗ int(a2) → int(a1 mod a2)

Σ(=) = Π{a1 : int , a2 : int}.
int(a1) ∗ int(a2) → int(if (a1 = a2, 1, 0))

Σ(6=) = Π{a1 : int , a2 : int}.
int(a1) ∗ int(a2) → int(if (a1 6= a2, 1, 0))

...

Figure 3: The types assigned to some constants in MLΠ,Σ
0

7

/ indicates that division can only be applied to a pair of integers 〈x1, x2〉 such that x2 is not 0. This
may seem restrictive, but it is not. For instance, we can define the usual division function on integers
as follows (after the exception mechanism becomes available),

λa1 : int .λa2 : int.lam x : int(a1) ∗ int(a2).
if(= [a2, 0](〈snd(x), 0〉), raise DivisionByZero, /[a1, a2](x))

which raises an exception when the divisor is 0. Notice that we need the following sorting rule for
typing /[a1, a2](x) in the above expression.

φ ` a1 : int φ ` a2 : int φ |= a2 6= 0

φ ` a1/a2 : int

The precise reason why this works can be readily understood once the typing rules for MLΠ,Σ
0 are

introduced.

2.2 Static Semantics

We write φ ` τ [well-formed] to mean that τ is a legally formed type under φ. For instance, the
following rules are for constructing types of the forms int(i) and bool(i), respectively.

φ ` i : int

φ ` int(i) [well-formed]

φ ` i : {a : int | 0 ≤ a ≤ 1}

φ ` bool(i) [well-formed]

Notice that the rule for constructing bool(i) indicates that we need to show that 0 ≤ i ≤ 1 holds in order
to form such a type. Therefore, bool(2) is ill-formed. We omit other standard rules for constructing
well-formed types.

index substitutions θI ::= [] | θI [a 7→ i]
substitutions θ ::= [] | θ[x 7→ v] | θ[f 7→ e]

A substitution is a finite mapping and [] represents an empty mapping. We use θI for a substitution
mapping index variables to index expressions and dom(θI) for the domain of θI . Note that θI [a 7→ i]
extends θI , whose domain does not contain a, with a mapping from a to i. Similar notations are used
for substitutions on variables. We write •[θI] (•[θ]) for the result of applying θI (θ) to •, respectively,
where • can be a type, a context, an expression, etc. The standard definition is omitted. In this paper,
we substitute only values for lam-variables.

We use a judgment of the form φ ` i : γ to mean that i can be assigned the sort γ under the index
variable context φ. We omit the standard rules for deriving such judgments. The following rules are
for deriving judgments of the form φ ` θI : φ′, which roughly means that θI has ”type” φ′.

φ ` [] : ·
(sub-i-empty)

φ ` θI : φ′ φ ` i : γ[θI]

φ ` θI [a 7→ i] : φ′, a : γ
(sub-i-var)

φ ` θI : φ′ φ |= P [θI]

φ ` θI : φ′, P
(sub-i-prop)

Lemma 2.1 (Index Substitution) If φ ` θI : φ′ holds and φ, φ′ ` i : γ is derivable, then φ ` i[θI] : γ[θI]
is also derivable.

8

Proof This directly follows from a structural induction on the derivation of φ, φ ′ ` i : γ.

We write φ |= τ ≡ τ ′ for the congruent extension of φ |= i = j from index expressions to types,
which is determined by the following rules. Note that we write φ |= ~ı = ~ı′ to mean φ |= ik = i′k for
k = 1, . . . , n, assuming ~ı = (i1, . . . , in) and ~ı′ = (i′1, . . . , i

′
n). The application of these rules generates

constraints during type-checking.

δ has the kind ~γ → ∗ φ `~ı : ~γ φ `~ı′ : ~γ φ |=~ı =~ı′

φ |= δ(~ı) ≡ δ(~ı′)

φ |= τ1 ≡ τ ′
1 φ |= τ2 ≡ τ ′

2

φ |= τ1 ∗ τ2 ≡ τ ′
1 ∗ τ ′

2

φ |= τ ′
1 ≡ τ1 φ |= τ2 ≡ τ ′

2

φ |= τ1 → τ2 ≡ τ ′
1 → τ ′

2

φ,~a : ~γ |= τ ≡ τ ′

φ |= Π~a : ~γ.τ ≡ Π~a : ~γ.τ ′

φ, a : γ |= τ ≡ τ ′

φ |= Σa : γ.τ ≡ Σa : γ.τ ′

We say that δ has the kind ~γ → ∗ if δ takes index expressions ~ı of sorts ~γ to form a type. There are
currently no formal judgments for sort equivalence or subsorting. They are not really needed at this
point, since ultimately all sorts only describe various subsets of integers. Some details can be found
in (Xi) as to how an expression of type Πa : γ.τ can still be implicitly coerced into one with equivalent
dynamic semantics, but of type Πa : γ ′.τ , where γ and γ ′ are sorts such that a : γ ′ ` a : γ.

As could be expected, we have the following proposition.

Proposition 2.2 Type conversion is an equivalence relation:

1. If φ ` τ [well-formed] holds, then φ |= τ ≡ τ also holds.

2. If φ |= τ ≡ τ ′ holds, then φ |= τ ′ ≡ τ also holds.

3. If both φ |= τ ≡ τ ′ and φ |= τ ′ ≡ τ ′′ hold, then φ |= τ ≡ τ ′′ also holds.

We present the typing rules for MLΠ,Σ
0 in Figure 4. We use φ; Γ ` e : τ for a typing judgment. The

judgment basically means that e can be assigned type τ under φ; Γ, which map free index variables and
variables in e to sorts and types, respectively. We use D for typing derivations and D :: φ; Γ ` e : τ for
a typing derivation D whose conclusion is φ; Γ ` e : τ .

Let ~a be a sequence of index variables a1, . . . , an and ~ı be a sequence of index expressions i1, . . . , in;
we write [~a 7→~ı] for a substitution that maps ak to ik for k = 1, . . . , n; given an index variable context
~a : ~γ, that is, a1 : γ1, . . . , an : γn for ~γ = (γ1, . . . , γn), we write φ `~ı : ~γ to mean that φ ` [~a 7→~ı] : (~a : ~γ).
Notice that φ ` ~ı : ~γ does not simply mean φ ` ik : γk for k = 1, . . . , n as ak may have a occurrence
in γk′ for 1 ≤ k < k′ ≤ n. Some of the typing rules have obvious side conditions, which are omitted.
For instance, in the rule (type-ilam), ~a cannot have free occurrences in Γ. We write dom(Γ) for
the domain of Γ, that is, the set of variables declared in Γ. Given substitutions θI and θ, we say
φ; Γ ` (θI ; θ) : (φ′; Γ′) holds if φ ` θI : φ′ and dom(θ) = dom(Γ′) and φ; Γ[θI] ` θ(x) : Γ′(x)[θI] for all
x ∈ dom(Γ′).

The following lemma plays a pivotal rôle in proving the subject reduction theorem for MLΠ,Σ
0 . We

omit its standard proof, which is available in (Xi).

Lemma 2.3 Assume that φ, φ′; Γ,Γ′ ` e : τ is derivable and φ; Γ ` (θI ; θ) : (φ′; Γ′) holds. Then we can
derive φ; Γ[θI] ` e[θI][θ] : τ [θI].

9

φ; Γ ` e : τ1 φ |= τ1 ≡ τ2

φ; Γ ` e : τ2

(type-eq)

Σ(c) = τ

φ; Γ ` c : τ
(type-constant)

Γ(x) = τ

φ; Γ ` x : τ
(type-lam-var)

Γ(f) = τ

φ; Γ ` f : τ
(type-fix-var)

φ,~a : ~γ; Γ ` v : τ

φ; Γ ` λ~a : ~γ.v : Π~a : ~γ.τ
(type-ilam)

φ; Γ ` e : Π~a : ~γ.τ φ `~ı : ~γ

φ; Γ ` e[~ı] : τ [~a 7→~ı]
(type-iapp)

φ; Γ ` e : bool(i) φ, i = 1; Γ ` e1 : τ φ, i = 0; Γ ` e2 : τ

φ; Γ ` if(e, e1, e2) : τ
(type-if)

φ; Γ ` 〈〉 : 1
(type-unit)

φ; Γ ` e1 : τ1 φ; Γ ` e2 : τ2

φ; Γ ` 〈e1, e2〉 : τ1 ∗ τ2

(type-tuple)

φ; Γ ` e : τ1 ∗ τ2

φ; Γ ` fst(e) : τ1

(type-fst)

φ; Γ ` e : τ1 ∗ τ2

φ; Γ ` snd(e) : τ2

(type-snd)

φ; Γ, x : τ1 ` e : τ2

φ; Γ ` lam x : τ1.e : τ1 → τ2

(type-lam)

φ; Γ ` e1 : τ1 → τ2 φ; Γ ` e2 : τ1

φ; Γ ` e1(e2) : τ2

(type-app)

φ,~a : ~γ; Γ, f : Π~a : ~γ.τ ` v : τ

φ; Γ ` fun f [~a : ~γ] : τ is v : Π~a : ~γ.τ
(type-fun)

φ; Γ ` e1 : Σa : γ.τ1 φ, a : γ; Γ, x : τ1 ` e2 : τ2

φ; Γ ` open e1 as 〈a | x〉 in e2 : τ2

(type-open)

φ ` i : γ φ; Γ ` e : τ [a 7→ i]

φ; Γ ` 〈i | e〉 : Σa : γ.τ
(type-pack)

Figure 4: Typing Rules for MLΠ,Σ
0

10

2.3 Dynamic Semantics

We present the dynamic semantics of MLΠ,Σ
0 through the use of evaluation contexts, which are defined

below.
evaluation contexts E ::=

[] | if(E, e1, e2) | fst(E) | snd(E) | 〈E, e〉 | 〈v,E〉 |
E[~ı] | E(e) | v(E) | 〈i | E〉 | open E as 〈a | x〉 in e

We write E[e] for the expression resulting from replacing the hole [] in E with e. Note that this
replacement can never result in capturing free variables.

Definition 2.4 A redex is defined as follows.

• Let c be a primitive function such as +,−, ∗, /, etc., and Π~a : ~γ.τ1 → τ2 be the type of c. Then
c[~ı](v1) is a redex if v1 is of type τ1[~a 7→ ~ı], which reduces to some value v2 of type τ2[~a 7→ ~ı]
according to the definition of c. For example, +[1, 1](〈1, 1〉) reduces to 2. Note that we need to
assume that the type of v2 is the same as that of c[~ı](v1), that is, the implementation of a primitive
function is consistent with its assigned type.

• if(c, e1, e2) are redexes for c = true, false; they reduce to e1 and e2, respectively.

• fst(〈v1, v2〉) is a redex, which reduces to v1.

• snd(〈v1, v2〉) is a redex, which reduces to v2.

• (lam x : τ.e)(v) is a redex, which reduces to e[x 7→ v].

• Let e be fun f [~a : ~γ] : τ is v. Then e is a redex, which reduces to λ~a : ~γ.v[f 7→ e].

• (λ~a : ~γ.v)[~ı] is a redex, which reduces to v[~a 7→~ı].

• open 〈i | v〉 as 〈a | x〉 in e is a redex, which reduces to e[a 7→ i][x 7→ v].

We use r for a redex and write r ↪→ e if r reduces to e. If e1 = E[r], e2 = E[e] and r ↪→ e, we also
write e1 ↪→ e2 and say e1 reduces to e2 in one step.

Let ↪→∗ be the reflexive and transitive closure of ↪→. We say e1 reduces to e2 (in many steps) if e1 ↪→∗ e2.
We are now ready to establish the the following subject reduction theorem for MLΠ,Σ

0 .

Theorem 2.5 (Subject Reduction) Assume ·; · ` e : τ is derivable in MLΠ,Σ
0 , that is, e is a well-typed

closed expression in MLΠ,Σ
0 . If e ↪→ e′, then ·; · ` e′ : τ is also derivable in MLΠ,Σ

0 .

Proof Assume e = C[r]. The proof proceeds by induction on the structure of C. The only interesting
case is where C = []. In this case, e = r and we proceed by induction on the height of a typing derivation
D of ·; · ` e : τ .

• D ends with an application of the rule (type-eq), that is, D is of the following form.

· |= τ ′ ≡ τ D1 :: ·; · ` e : τ ′

·; · ` e : τ

By induction hypothesis on D1, ·; · ` e′ : τ ′ is derivable, which leads to the following.

· |= τ ′ ≡ τ ·; · ` e′ : τ ′

·; · ` e′ : τ

11

We now deal with the cases where the last rule applied in D is not (type-eq).

• e = fun f [~a : ~γ] : τ1 is v and τ = Π~a : ~γ.τ1. Then we have the following derivation, where the last
applied rule is (type-fun).

D1 :: ~a : ~γ; f : Π~a : ~γ.τ1 ` v : τ1

·; · ` fun f [~a : ~γ] : τ1 is v : Π~a : ~γ.τ1

By Lemma 2.3, we know that ~a : ~γ; · ` v[f 7→ e] : τ1 is derivable. Note that e′ = λ~a : ~γ.v[f 7→ e].
Therefore, we have that ·; · ` e′ : Π~a : ~γ.τ1 is derivable.

• e = open 〈i | v〉 as 〈a | x〉 in e1. Then we have the following derivation, where the last applied
rule is (type-open).

D1 :: ·; · ` 〈i | v〉 : Σa : γ.τ1 D2 :: a : γ;x : τ1 ` e1 : τ

·; · ` open 〈i | v〉 as 〈a | x〉 in e1 : τ

There are two possibilities.

– D1 is of the following form, ending with an application of the rule (type-pack).

· ` i : γ ·; · ` v : τ1[a 7→ i]

·; · ` 〈i | v〉 : Σa : γ.τ1

Note that a has no free occurrence in τ . By Lemma 2.3, we know that ·; · ` e′ = e1[a 7→
i][x 7→ v] : τ [a 7→ i] = τ is derivable.

– D1 is of the following form, ending with an application of the rule (type-eq).

D′
1 :: ·; · ` 〈i | v〉 : Σa : γ.τ ′

1 · |= Σa : γ.τ ′
1 ≡ Σa : γ.τ1

·; · ` 〈i | v〉 : Σa : γ.τ1

Note that both · ` i : γ and a : γ |= τ ′
1 ≡ τ1 are derivable and thus · |= τ ′

1[a 7→ i] ≡ τ1[a 7→ i]
is derivable. We have two possibilities.

∗ D′
1 is of the following form, ending with an application of the rule (type-pack).

· ` i : γ ·; · ` v : τ ′
1[a 7→ i]

·; · ` 〈i | v〉 : Σa : γ.τ ′
1

Therefore we have the following derivation D∗
1 of ·; · ` 〈i | v〉 : Σa : γ.τ1 that ends with

an application of the rule (type-pack). Notice that the height of D∗
1 is the same as

that of D1.

· ` i : γ

·; · ` v : τ ′
1[a 7→ i] · |= τ ′

1[a 7→ i] ≡ τ1[a 7→ i]

·; · ` v : τ1[a 7→ i]

·; · ` 〈i | v〉 : Σa : γ.τ1

By the previous case analysis, we are done.

12

∗ D′
1 is of the following form, ending with an application of (type-eq).

D′′
1 :: ·; · ` 〈i | v〉 : Σa : γ.τ ′′

1 · |= Σa : γ.τ ′′
1 ≡ Σa : γ.τ ′

1

·; · ` 〈i | v〉 : Σa : γ.τ ′
1

By Proposition 2.2, we have · |= Σa : γ.τ ′′
1 ≡ Σa : γ.τ1. Then we have the following

derivation D∗
1 of ·; · ` 〈i | v〉 : Σa : γ.τ1,

D′′
1 :: ·; · ` 〈i | v〉 : Σa : γ.τ ′′

1 · |= Σa : γ.τ ′′
1 ≡ Σa : γ.τ1

·; · ` 〈i | v〉 : Σa : γ.τ1

which is shorter than D1. Clearly, D∗

1 leads to a derivation D∗ of ·; · ` e : τ , which is
shorter than D. By induction hypothesis on D∗, we are done.

The rest of cases can be handled similarly.

2.4 Erasure

We can simply transform MLΠ,Σ
0 into a language ML0 by erasing all syntax related to index expressions

in MLΠ,Σ
0 . Then ML0 basically extends simply typed λ-calculus with recursion. Let |e| be the erasure

of expression e.3

Given a well-typed closed expression e in MLΠ,Σ
0 , it can be shown that if |e| reduces to e0 in ML0

then e reduces to some e1 such that |e1| = e0. For this, we need the observation that the erasure of a
value in MLΠ,Σ

0 is a value in ML0, which can be readily verified. This is precisely the reason why we
impose the requirement that the body of each λ be a value. Otherwise, the erasure of λa : γ.e, which
is |e|, may not necessarily be a value in ML0. We will present an example at the end of Section 3 to
illustrate this (subtle) point.

We can now show that if e is a well-typed closed expression in MLΠ,Σ
0 that is terminating, then |e| is

terminating in ML0. This is a crucial point since the evaluation of a program in MLΠ,Σ
0 is (likely) done

through the evaluation of its erasure in ML0. Please find more details on the issue of erasure in (Xi
and Pfenning ; Xi).

3 ML
Π,Σ
0,�

We combine metrics with the dependent types in MLΠ,Σ
0 , forming a language MLΠ,Σ

0,�. We then prove

that every well-typed program in MLΠ,Σ
0,� is terminating, which is the main technical contribution of the

paper.

3.1 Metrics

We use < for the usual strict lexicographic ordering on tuples of natural numbers, that is, given two
tuples of natural numbers 〈i1, . . . , in〉 and 〈i′1, . . . , i

′

n′〉, 〈i1, . . . , in〉 < 〈i′1, . . . , i
′

n′〉 holds if n = n′ and for
some 1 ≤ k ≤ n, ij = i′j for j = 1, . . . , k − 1 and ik < i′k. Evidently, < is a well-founded ordering. We
stress that (in theory) there is no difficulty supporting various other well-founded orderings on natural
numbers such as the usual multiset ordering. We fix an ordering solely for easing the presentation.

3The erasure |open e1 as 〈a | x〉 in e2| is (λx : τ.|e2|)|e1|, where τ is the type of |e1|, or let x = |e1| in |e2| end when
let-expressions are introduced.

13

fun ack[a1 : nat, a2 : nat] :
〈a1, a2〉 ⇒ int(a1) → int(a2) → Σa : nat.int(a) is

lam x1 : int(a1).lam x2 : int(a2).
if (= [a1, 0](〈x1, 0〉),

〈a2 + 1 | +[a2, 1](〈x2, 1〉)〉,
if (= [a2, 0](〈x2, 0〉),

ack[a1 − 1, 1](−[a1, 1](〈x1, 1〉))(1),
open ack[a1, a2 − 1](x1)(−[a2, 1](〈x2, 1〉))

as 〈a′2 | x′
2〉 in ack[a1 − 1, a′2](−[a1, 1](〈x1, 1〉))(x

′
2)))

Figure 5: The Ackermann Function in MLΠ,Σ
0,�

Definition 3.1 (Metric) Let µ = 〈i1, . . . , in〉 be a tuple of index expressions and φ be an index variable
context. We say µ is a metric under φ if φ ` ik : nat are derivable for k = 1, . . . , n. We write
φ ` µ : metric to mean that µ is a metric under φ.

A decorated type in MLΠ,Σ
0,� is of the form Π~a : ~γ.µ ⇒ τ , and the rule for forming such a type is

given below.
φ,~a : ~γ ` τ [well-formed] φ,~a : ~γ ` µ : metric

φ ` Π~a : ~γ.µ ⇒ τ [well-formed]

We emphasize that a decorated type can only occur at top level. In other words, when a decorated
type Π~a : ~γ.µ ⇒ τ is formed, τ must be a regular type as is defined in MLΠ,Σ

0 .

The syntax of MLΠ,Σ
0,� is the same as that of MLΠ,Σ

0 except that a context Γ in MLΠ,Σ
0,� maps every

fix-variable f in its domain to a decorated type, and a recursive function in MLΠ,Σ
0,� is of the form

fun f [~a : ~γ] : µ ⇒ τ is v. As an example, we present in Figure 5 an expression in MLΠ,Σ
0,� corresponding

to the implementation of the Ackermann function in Figure 1. Note that we write = [a1, 0](〈x1, 0〉) for
testing whether x1 equals 0 as = is previously assumed to have the following type.

Π{a1 : int , a2 : int}.int(a1) ∗ int(a2) → bool(if (a1 = a2, 1, 0))

The process that translates the implementation into the expression in MLΠ,Σ
0,� is what we call elaboration,

which is explained in (Xi and Pfenning ; Xi). Our approach to program termination verification is
intended to be applied to elaborated programs and we assume the availability of such an elaboration
process when presenting realistic examples.

3.2 Dynamic and Static Semantics

The dynamic semantics of MLΠ,Σ
0,� is formed in precisely the same manner as that of MLΠ,Σ

0 and we
thus omit all the details.

The difference between MLΠ,Σ
0,� and MLΠ,Σ

0 lies in static semantics. There are two kinds of typing

judgments in MLΠ,Σ
0,�, which are of the forms φ; Γ ` e : τ and φ; Γ ` e : τ �f µ0. We call the latter a

metric typing judgment.
Suppose Γ(f) = Π~a : ~γ.µ ⇒ τ ; roughly speaking, φ; Γ ` e : τ �f µ0 means that, for each

free occurrence of f in e, f is followed by a sequence of index expressions [~ı], and µ[~a 7→ ~ı], which

14

φ; Γ ` e : τ1 �f µ0 φ |= τ1 ≡ τ2

φ; Γ ` e : τ2 �f µ0

(�-eq)

Σ(c) = τ

φ; Γ ` c : τ �f µ0

(�-constant)

Γ(x) = τ

φ; Γ ` x : τ �f µ0

(�-lam-var)

Γ(f1) = τ f1 6= f

φ; Γ ` f1 : τ �f µ0

(�-fix-var)

φ; Γ ` e : bool(i) �f µ0

φ, i = 1; Γ ` e1 : τ �f µ0 φ, i = 0; Γ ` e2 : τ �f µ0

φ; Γ ` if(e, e1, e2) : τ �f µ0

(�-if)

φ,~a : ~γ; Γ ` v : τ �f µ0

φ; Γ ` λ~a : ~γ.v : Π~a : ~γ.τ �f µ0

(�-ilam)

φ; Γ ` e : Π~a : ~γ.τ �f µ0 φ `~ı : ~γ

φ; Γ ` e[~ı] : τ [~a 7→~ı] �f µ0

(�-iapp)

φ; Γ ` e1 : τ1 �f µ0 φ; Γ ` e2 : τ2 �f µ0

φ; Γ ` 〈e1, e2〉 : τ1 ∗ τ2 �f µ0

(�-tuple)

φ; Γ ` e : τ1 ∗ τ2 �f µ0

φ; Γ ` fst(e) : τ1 �f µ0

(�-fst)

φ; Γ ` e : τ1 ∗ τ2 �f µ0

φ; Γ ` snd(e) : τ2 �f µ0

(�-snd)

Figure 6: Metric Typing Rules for MLΠ,Σ
0,� (1)

we call the label of this occurrence of f , is less than µ0 under φ. Now suppose we have a well-
typed closed recursive function e = fun f [~a : ~γ] : µ ⇒ τ is v in MLΠ,Σ

0,� and ~ı of sorts ~γ; then
f [~ı][f 7→ e] = e[~ı] ↪→∗ v[~a 7→~ı][f 7→ e] holds; with the metric attached to f , we can show that all labels
of f in v are less than µ[~a 7→ ~ı], which is the label of f in f [~ı]; since labels cannot decrease forever,
this sheds some basic intuition on why all recursive functions in MLΠ,Σ

0,� are terminating. However,
this intuitive argument is difficult to be formally carried out directly in the presence of higher-order
functions.

The typing rules in MLΠ,Σ
0,� for a judgment of the form φ; Γ ` e : τ are essentially the same as those

in MLΠ,Σ
0 except for the following ones.

Γ(f) = Π~a : ~γ.µ ⇒ τ

φ; Γ ` f : Π~a : ~γ.τ
(type-fix-var)

φ,~a : ~γ; Γ, f : Π~a : ~γ.µ ⇒ τ ` v : τ �f µ

φ; Γ ` fun f [~a : ~γ] : µ ⇒ τ is v : Π~a : ~γ.τ
(type-fun)

We present the rules for deriving metric typing judgments in Figure 6 and Figure 7. Given µ =

15

φ; Γ, x : τ1 ` e : τ2 �f µ0

φ; Γ ` lam x : τ1.e : τ1 → τ2 �f µ0

(�-lam)

φ; Γ ` e1 : τ1 → τ2 �f µ0 φ; Γ ` e2 : τ1 �f µ0

φ; Γ ` e1(e2) : τ2 �f µ0

(�-app)

φ,~a1 : ~γ1; Γ, f1 : Π~a1 : ~γ1.µ1 ⇒ τ1 ` v1 : τ1 �f1
µ1

φ,~a1 : ~γ1; Γ, f1 : Π~a1 : ~γ1.µ1 ⇒ τ1 ` v1 : τ1 �f µ0

φ; Γ ` fun f1[~a1 : ~γ1] : µ1 ⇒ τ1 is v1 : Π~a1 : ~γ1.τ1 �f µ0

(�-fun)

φ `~ı : ~γ φ |= µ0[~a 7→~ı] < µ0 φ; Γ ` f : Π~a : ~γ.τ

φ; Γ ` f [~ı] : τ [~a 7→~ı] �f µ0

(�-lab)

φ ` i : γ φ; Γ ` e : τ [a 7→ i] �f µ0

φ; Γ ` 〈i | e〉 : Σa : γ.τ �f µ0

(�-pack)

φ; Γ ` e1 : Σa : γ.τ1 �f µ0

φ, a : γ; Γ, x : τ1 ` e2 : τ2 �f µ0

φ; Γ ` open e1 as 〈a | x〉 in e2 : τ2 �f µ0

(�-open)

Figure 7: Metric Typing Rules for MLΠ,Σ
0,� (2)

〈i1, . . . , in〉 and µ′ = 〈i′1, . . . , i
′
n〉, φ |= µ < µ′ means that for some 1 ≤ k ≤ n, we have that φ, i1 =

i′1, . . . , ij−1 = i′j−1 |= ij ≤ i′j hold for all 1 ≤ j < k and φ, i1 = i′1, . . . , ik−1 = i′k−1 |= ik < i′k also holds.
It should be clear that if φ |= µ < µ′ holds and · ` θI : φ is derivable, then µ[θI] < µ′[θI] is true.

Lemma 3.2 We have the following.

1. Assume φ, φ′; Γ,Γ′ ` e : τ is derivable and φ; Γ ` (θI ; θ) : (φ′; Γ′) holds. Then we can derive
φ; Γ[θI] ` e[θI][θ] : τ [θI].

2. Assume φ, φ′; Γ,Γ′ ` e : τ �f µ0 is derivable and φ; Γ ` (θI ; θ) : (φ′; Γ′) holds and f ∈ dom(Γ).
Then we can derive φ; Γ[θI] ` e[θI][θ] : τ [θI] �f µ0[θI].

Proof (1) and (2) are proved simultaneously by structural induction on the derivation D1 of φ, φ′; Γ,Γ′ `
e : τ and the derivation D2 of φ, φ′; Γ,Γ′ ` e : τ �f µ, respectively. We present some cases.

• D1 is of the following form, where e = lam x : τ1.e1 and τ = τ1 → τ2.

φ, φ′; Γ,Γ′, x : τ1 ` e1 : τ2

φ, φ′; Γ,Γ′ ` lam x : τ1.e1 : τ1 → τ2

(type-lam)

By induction hypothesis, φ; Γ[θI], x : τ1[θI] ` e1[θI][θ] : τ2[θI] is derivable. Hence, φ; Γ ` lam x :
τ1[θI].e1[θI][θ] : τ1[θI] → τ2[θI] is derivable. Note that e[θI][θ] = lam x : τ1[θI].e1[θI][θ] (as we can
choose x to make sure it has no free occurrences in θ) and τ [θI] = τ1[θI] → τ2[θI]. Hence, we are
done.

16

• D2 is of the following form, where e = 〈i | e1〉 and τ = Σa : γ.τ1.

φ, φ′ ` i : γ φ, φ′; Γ,Γ′ ` e1 : τ1[a 7→ i] �f µ0

φ, φ′; Γ,Γ′ ` 〈i | e1〉 : Σa : γ.τ1 �f µ0

(�-pack)

By induction hypothesis, φ; Γ[θI] ` e1[θI][θ] : τ1[a 7→ i][θI] �f µ0[θI] is derivable. By Lemma 2.1,
φ ` i[θI] : γ[θI] is derivable. Clearly, we can choose a so that it has no free occurrences in θI and
thus have τ1[a 7→ i][θI] = τ1[θI [a 7→ i[θI]]. We then have the following derivation, where the last
applied rule is (�-pack).

φ ` i[θI] : γ[θI] φ; Γ[θI] ` e1[θI][θ] : τ1[θI][a 7→ i[θI]] �f µ0[θI]

φ; Γ[θI] ` 〈i[θI] | e1[θI][θ]〉 : Σa : γ[θI].τ1[θI] �f µ0[θI]

Note that e[θI][θ] = 〈i[θI], e1[θI][θ]〉 and τ [θI] = (Σa : γ.τ1)[θI] = Σa : γ[θI].τ1[θI]. We are done.

The rest of the cases can be handled similarly.

Theorem 3.3 (Subject Reduction) Assume that ·; · ` e : τ is derivable in MLΠ,Σ
0,�. If e ↪→ e′, then

·; · ` e′ : τ is also derivable in MLΠ,Σ
0,�.

Proof The proof is essentially the same as the one for Theorem 2.5.

As could be expected, we have the following.

Proposition 3.4 Assume that D is a derivation of φ; Γ ` e : τ �f µ0. Then then there is a derivation
of φ; Γ ` e : τ with the same height as D.

Proof The proof immediately follows from a structural induction on D.

3.3 Reducibility

We use e ↓ to mean that there is no infinite reduction sequence starting from e. Clearly, for every e
such that e ↓ holds, there exists a smallest number l such that the number of steps in each reduction
sequence from e is at most l; we use l(e) for such a number.

In the current setting, e ↓ is equivalent to e ↪→∗ v for some v. However, this is to be changed after
pattern matching is introduced, which may bring nondeterminism into evaluation. We define the notion
of reducibility for well-typed closed expressions e in such a manner so that e ↓ hold for all reducible
expressions e. The intention is to show that every well-typed closed expression e is reducible and thus
there is no infinite reduction sequence starting from e.

Definition 3.5 (Reducibility) Suppose that e is a closed expression of type τ . We define that e is
reducible of type τ by induction on the complexity of τ , namely, the number of type constructors ∗, →,
Π and Σ in τ .

1. τ is a base type. Then e is reducible of type τ if e ↓ holds.

2. τ = τ1 ∗ τ2. Then e is reducible of type τ if e ↓ holds and for every v such that e ↪→∗ v holds,
v = 〈v1, v2〉 for some values v1 and v2 that are reducible of types τ1 and τ2, respectively.

17

3. τ = τ1 → τ2. Then e is reducible of type τ if e ↓ holds and e(v) is reducible of type τ2 for every
value v reducible of type τ1.

4. τ = Π~a : ~γ.τ1. Then e is reducible of type τ if e ↓ and e[~ı] is reducible of type τ1[~a 7→ ~ı] for each
~ı : ~γ.

5. τ = Σa : γ.τ1. Then e is reducible of type τ if e ↓ holds and for all v satisfying e ↪→∗ v, we have
v = 〈i | v1〉 for some i and v1 such that v1 is reducible of type τ1[a 7→ i].

We may use the phrase that e is reducible to mean that e is reducible of type τ for some τ .

Proposition 3.6 Given a ground type τ , that is, there is no → or Π inside τ , then every value of type
τ is reducible.

Proof This immediately follows from induction on the complexity of τ .

Proposition 3.7 Assume that e is a closed expression of type τ .

1. If e is reducible of type τ and e ↪→ e′, then e′ is reducible of type τ .

2. If e is not a value and for every e′ such that e ↪→ e′, e′ is reducible of type τ , then e is reducible
of type τ .

3. If e ↓ holds and for every v such that e ↪→∗ v, v is reducible, then e is also reducible.

Proof (1) and (2) immediately follow from induction on the complexity of τ . We prove (3) by induction
on l(e). Assume that e ↪→ e′. Then l(e′) < l(e). For each v such that e′ ↪→∗ v, we have e ↪→∗ v and
thus v is reducible. By induction hypothesis, e′ is reducible. By (2), we know that e is reducible.

The following is a key notion for handling recursion, which, though natural, requires some technical
insights.

Definition 3.8 (µ-Reducibility). Let e be a well-typed closed recursive function fun f [~a : ~γ] : µ ⇒
τ is v and µ0 be a closed metric. We define that e is µ0-reducible if e[~ı] is reducible of type τ [~a 7→~ı] for
each ~ı : ~γ satisfying µ[~a 7→~ı] < µ0.

We are now ready to present the main technical result in this paper.

Lemma 3.9 (Main Lemma) Assume that φ; Γ ` e : τ is derivable and ·; · ` (θI ; θ) : (φ; Γ) holds. Also
assume that (1) for every x ∈ dom(Γ), θ(x) is reducible, and (2) for every f ∈ dom(Γ), ·; Γ[θI] `
e[θI] : τ [θI] �f µf is derivable for some µf such that θ(f) is µf -reducible. Then e[θI][θ] is reducible.

Proof Let D be a derivation of φ; Γ ` e : τ and we proceed by induction on the height of D. We
present some interesting cases.

• The rule (type-constant) is last applied in D,

Σ(c) = τ

φ; Γ ` c : τ
(type-constant)

where e = c. We have two possibilities.

18

– τ is a ground type. Then c is reducible by Proposition 3.6.

– c is a primitive function and τ = τ1 → τ2 for some ground types τ1 and τ2. Assume that
v1 is reducible of type τ1 and c(v1) ↪→ v2. Then v2 is of type τ2 and thus reducible by
Proposition 3.6.

Hence, we conclude that e is reducible.

• The rule (type-ilam) is last applied in D,

D1 :: φ,~a : ~γ; Γ ` v : τ1

φ; Γ ` λ~a : ~γ.v : Π~a : ~γ.τ1

(type-ilam)

where e = λ~a : ~γ.v and τ = Π~a : ~γ.τ1. Let e∗ = e[θI][θ]. Assume that · ` ~ı : ~γ[θI]. It is clear
that · ` θ′I : (φ,~a : ~γ) is derivable for θ′I = θI [~a 7→ ~ı]. Note that no index variables in ~a have free
occurrences in Γ. By induction hypothesis on D1, v[θ′I][θ] is reducible. Hence e∗[~ı] is reducible
since e∗[~ı] ↪→ v[θ′I][θ]. Note that e∗ is a value. Hence, e∗ is reducible by definition.

• The rule (type-if) is last applied in D,

D0 :: φ; Γ ` e0 : bool(i)
D1 :: φ, i = 1; Γ ` e1 : τ D2 :: φ, i = 0; Γ ` e2 : τ

φ; Γ ` if(e0, e1, e2) : τ

where e = if(e0, e1, e2). Let e∗ = e[θI][θ], and e∗k = ek[θI][θ] for k = 0, 1, 2. By induction
hypothesis on D0, e∗0 is reducible. Hence, e∗0 ↓ holds. Assume that e∗ ↪→ e′. We prove that e′ is
reducible by induction on l0 = l(e∗0). There are three possibilities.

– e∗0 ↪→ e′0 and e′ = if(e′0, e
∗
1, e

∗
2). By induction hypothesis, e′ is reducible since l(e′0) < l(e∗0).

– e∗0 = true and e′ = e∗1. Then · ` i[θI] = 1 holds by Theorem 3.3. This implies that
· ` θI : (φ, i = 1) is derivable. Hence, e′ = e∗1 is reducible by induction hypothesis on D1.

– e∗0 = false and e′ = e∗2. Then · ` i[θI] = 0 holds by Theorem 3.3. This implies that
· ` θI : (φ, i = 0) is derivable. Hence, e′ = e∗2 is reducible by induction hypothesis on D2.

By Proposition 3.7 (2), we conclude that e∗ is reducible.

• The rule (type-lam) is last applied in D,

D1 :: φ; Γ, x : τ1 ` e1 : τ2

φ; Γ ` lam x : τ1.e1 : τ1 → τ2

(type-lam)

where e = lam x : τ1.e1 and τ = τ1 → τ2. Obviously, we can assume that x 6∈ dom(θ). Let
e∗ = e[θI][θ]. Then e∗ is of type τ ∗

1 → τ∗
2 for τ∗

1 = τ1[θI] and τ∗
2 = τ2[θI]. Assume that v is a

reducible value of type τ ∗
1 . Then e∗(v) ↪→ e∗1 = e1[θI][θ[x 7→ v]]. By induction hypothesis on D1,

e∗1 is reducible, and thus e∗(v) is reducible. By the definition of reducibility, e∗ is reducible since
e∗ is a value and e∗(v) is reducible for every reducible value of type τ ∗

1 .

• The rule (type-app) is last applied in D,

D1 :: φ; Γ ` e1 : τ1 → τ2 D2 :: φ; Γ ` e2 : τ1

φ; Γ ` e1(e2) : τ2

(type-app)

19

where e = e1(e2) and τ = τ2. Let e∗ = e[θI][θ]. By induction hypotheses on D1 and D2,
respectively, both e∗1 = e1[θI][θ] and e∗2 = e2[θI][θ] are reducible. Hence e∗1 ↓ and e∗2 ↓ hold.
Assume e∗ ↪→ e′. We show that e′ is reducible by induction on l(e∗1) + l(e∗2). There are three
possibilities.

– e∗1 ↪→ e′1 and e′ = e′1(e
∗
2). By induction hypothesis, e′ is reducible since l(e′1) + l(e∗2) <

l(e∗1) + l(e∗2).

– e∗1 is a value and e∗2 ↪→ e′2 and e′ = e∗1(e
′
2). By induction hypothesis, e′ is reducible since

l(e∗1) + l(e′2) < l(e∗1) + l(e∗2).

– e∗1 and e∗2 are some values of types τ ∗
1 → τ∗

2 and τ∗
1 , respectively, where τ ∗

1 = τ1[θI] and
τ∗

2 = τ2[θI]. Then e∗1(e
∗

2) is reducible of type τ ∗

2 by the definition of reducibility. Hence, by
Proposition 3.7 (1), e′ is reducible.

We conclude that e∗ is reducible by Proposition 3.7 (2).

• The rule (type-open) is last applied in D,

D1 :: φ; Γ ` e1 : Σa : γ.τ1 D2 :: φ, a : γ; Γ, x : τ1 ` e2 : τ2

φ; Γ ` open e1 as 〈a | x〉 in e2 : τ2

where e = open e1 as 〈a | x〉 in e2 and τ = τ2. Obviously, we can assume that a 6∈ dom(θI) and
x 6∈ dom(θ). Let e∗ = e[θI][θ]. Then e∗ = open e∗1 as 〈a | x〉 in e∗2, where e∗1 = e1[θI][θ] is of type
Σa : γ∗.τ∗

1 for γ∗ = γ[θI] and τ∗
1 = τ1[θI]. By induction hypothesis on D1, e∗1 is reducible. Hence

e∗1 ↓ holds. Assume e∗ ↪→ e′. We prove that e′ is reducible by induction on l(e∗1). There are two
possibilities.

– e∗1 ↪→ e′1 and e′ = open e′1 as 〈a | x〉 in e∗2. By induction hypothesis, e′ is reducible since
l(e′1) < l(e∗1).

– e∗1 = 〈i | v〉 for some i of sort γ∗ and some reducible value v of type τ ∗
1 [a 7→ i]. Hence, we

have e′ = e2[θI][θ][a 7→ i][x 7→ v] = e2[θI [a 7→ i]][θ[x 7→ v]], which is reducible by induction
hypothesis on D2.

We conclude that e∗ is reducible by Proposition 3.7 (2).

• The rule (type-fun) is last applied in D,

φ,~a1 : ~γ1; Γ, f1 : Π~a1 : ~γ1.µ1 ⇒ τ1 ` v1 : τ1 �f µ1

φ; Γ ` fun f1[~a1 : ~γ1] : µ1 ⇒ τ1 is v1 : Π~a1 : ~γ1.τ1

(type-fun)

where we have e = fun f1[~a1 : ~γ1] : µ1 ⇒ τ1 is v1 and τ = Π~a1 : ~γ1.τ1. Clearly, we can
require that ~a1 have no free occurrences in θI . Suppose that e∗ = e[θI][θ] is not reducible. It
is obvious that e∗ ↓ holds. Hence, by the definition of reducibility at Π-types and the well-
foundedness of the lexicographic ordering <, there exists ~ı0 : ~γ∗

1 such that e∗[~ı0] is not reducible
but e∗[~ı] are reducible for all ~ı : ~γ∗

1 satisfying µ∗

1[~a1 7→ ~ı] < µ∗

1[~a1 7→ ~ı0], where ~γ∗

1 = ~γ1[θI]
and µ∗

1 = µ1[θI]. Let µf1
= µ∗

1[~a1 7→ ~ı0], and we have that e∗ is µf1
-reducible. We can derive

·; Γ[θI], f1 : Π~a1 : ~γ∗
1 .τ1[θI] ` v1[θI [~a1 7→ ~ı0]] : τ1[θI [~a1 7→ ~ı0]] �f µf1

by Lemma 3.2. Note that
there is a derivation D1 of φ,~a1 : ~γ1; Γ, f1 : Π~a1 : ~γ1.µ1 ⇒ τ1 ` v1 : τ1 such that the height of D1 is
less than that of D. By induction hypothesis on D1, we have that v∗1 = v1[θI [~a1 7→~ı0]][θ[f1 7→ e∗]]
is reducible. Note that v1 is the only value such that e∗[~ı0] ↪→∗ v∗1 holds. Hence, e∗[~ı0] is reducible,
contradicting the definition of ~ı0. Therefore, e∗ is reducible.

20

types
τ ::= · · · | (τ1, . . . , τn)

expressions
e ::= · · · | e.n |

funs f1[~a1 : ~γ1] : µ1 ⇒ τ1 is v1 and . . .
and fn[~an : ~γn] : µn ⇒ τn is vn

values
v ::= · · · |

funs f1[~a1 : ~γ1] : µ1 ⇒ τ1 is v1 and . . .
and fn[~an : ~γn] : µn ⇒ τn is vn

evaluation contexts
E ::= · · · | E.n

Figure 8: The Syntax and Typing Rules for Mutual Recursion

All other cases can be treated similarly.

The following is the main result of the paper.

Theorem 3.10 If · ` e : τ is derivable in MLΠ,Σ
0,�, then e is reducible and thus terminating as there is

no infinite reduction sequence from e.

Proof The theorem immediately follows from Lemma 3.9.

We now present an example to illustrate an interesting point. Let e be fun f [a : ⊥] : 〈0〉int(a) →
int(a) is lam x : int(a).f [a](x), where ⊥ is the empty sort {a : int | 1 ≤ a ≤ 0}. Note that we can
derive

φ; Γ ` lam x : int(a).f [a](x) : int(a) → int(a) �f 〈0〉

for φ = a : ⊥ and Γ = f : Πa : ⊥.〈0〉 ⇒ int(a) → int(a), since a : ⊥ |= 0 < 0 holds. Therefore,
·; · ` λa : ⊥.e0 : Πa : ⊥.int(0) could have been derived in MLΠ,Σ

0,� if we had not required that
the body following a λ be a value. However, the erasure of λa : ⊥.e0, which is (fun f : int →
int is lam x : int.f(x))(0), reduces to itself, leading to an infinite reduction sequence in ML0. The
restriction requiring that the body of a λ be a value is partly motivated by avoiding this undesirable
consequence, that is, the erasure of a terminating expression in MLΠ,Σ

0,� may not be terminating in ML0.

4 Extensions

In this section, we extend MLΠ,Σ
0,� with some significant programming features such as mutual recursion,

datatypes and polymorphism, defining the notion of reducibility for each extension and thus making it
clear that Lemma 3.9 still holds after each extension.

21

4.1 Mutual Recursion

We here describe the treatment of mutual recursion, which is slightly different from the standard
treatment. The syntax for handling mutual recursion is given in Figure 8. We use (τ1, . . . , τn) for the
type of an expression representing n mutually recursive functions of types τ1, . . . , τn, respectively. Note
that this should not be confused with the product of types τ1, . . . , τn. The n in e.n must be a fixed
positive integer. The following typing rule (type-funs)

τ = (Π~a1 : ~γ1.τ1, . . . ,Π~an : ~γn.τn)
Γ0 = f1 : Π~a1 : ~γ1 : µ1 ⇒ τ1, . . . , fn : Π~an : ~γn : µn ⇒ τn

φ,~a1 : ~γ1; Γ,Γ0 ` v1 : τ1 �~f
µ1

...
φ,~an : ~γn; Γ,Γ0 ` vn : τn �~f

µn

φ; Γ ` e : τ

is for expression e of the form:

funs f1[~a1 : ~γ1] : µ1 ⇒ τ1 is v1 and . . . and fn[~an : ~γn] : µn ⇒ τn is vn

We also have a the following typing rule (type-choose) for choosing a mutually recursively defined
function.

φ; Γ ` e : (τ1, . . . , τn) 1 ≤ k ≤ n

φ; Γ ` e.k : τk

Let v be the following expression:

funs f1[~a1 : ~γ1] : µ1 ⇒ τ1 is v1 and . . . and fn[~an : ~γn] : µn ⇒ τn is vn

Then for every 1 ≤ k ≤ n, v.k is a redex, which reduces to λ~ak : ~γk.vk[f1 7→ v.1, . . . , fn 7→ v.n]. Let
~f = (f1, . . . , fn). We form a metric typing judgment φ; Γ ` e � ~f

µ0 for verifying that all labels of
f1, . . . , fn in e are less than µ0 under φ. The rules for deriving such a judgment are essentially the same
as those in Figure 6 and Figure 7 except (�-lab), which is given below.

f in ~f Γ(f) = Π~a : ~γ.µ ⇒ τ φ |= µ[~a 7→~ı] < µ0

φ; Γ ` f [~ı] : τ [~a 7→~ı] � ~f
µ0

The rule (�-funs) for handling mutual recursion is straightforward and thus omitted.

Definition 4.1 (Reducibility) Let e be a closed expression of type (τ1, . . . , τn) and e ↓ holds. Then e is
a reducible expression of type (τ1, . . . , τn) if e.k is reducible of type τk for each 1 ≤ k ≤ n.

4.2 Currying

A decorated type must so far be of the form Π~a : ~γ.µ ⇒ τ and this restriction has a rather unpleasant
consequence. For instance, we may want to assign the following type τ to the implementation of the
Ackermann function ack in Figure 1:

{i:nat} int(i) -> {j:nat} int(j) -> [k:nat] int(k),

22

which is formally written as

Πa1 : nat .int(a1) → Πa2 : nat .int(a2) → Σa : nat .int(a).

If we decorate τ with a metric µ, then µ can only involve the index variable a1, making it impossible to
verify that the implementation is terminating. Note that such a type is more general than the following
type when elaboration is concerned.

{i:nat,j:nat} int(i) -> int(j) -> [k:nat] int(k)

For instance, given the former type, ack(1) is elaborated into an expression of type {j:nat} int(j)

-> [k:nat] int(k); given the latter type, ack(1) is elaborated into an expression of type int(J) ->

[k:nat] int(k), where J is some unification variable that needs to be solved later; therefore, for the
sake of elaboration, the former type is more general than the latter one.

We generalize the form of decorated types to the following so as to address the issue.

Π~a1 : ~γ1.τ1 → · · · → Π~an : ~γn.τn → Π~a : ~γ.µ ⇒ τ.

We introduce the following form of expression e for representing a recursive function.

fun f [~a1 : ~γ1](x1 : τ1) · · · [~an : ~γn](xn : τn)[~a : ~γ] : τ is e0

Note that e0 is required to be a value if n = 0. In the following presentation, we only deal with the
case where n = 1. For n > 1, the treatment is similar.

For e = fun f [~a1 : ~γ1](x1 : τ1)[~a : ~γ] : τ is e0, we have e ↪→ λ~a1 : ~γ1.lam x1 : τ1.λ~a : ~γ.e0 and the
following typing rule

φ,~a1 : ~γ1,~a : ~γ; Γ, f : τ0, x1 : τ1 ` e : τ �f µ

φ; Γ ` fun f [~a1 : ~γ1](x1 : τ1)[~a : ~γ] : µ ⇒ τ is e : τ0

and the following metric typing rule,

φ |=~ı1 : ~γ1 φ |=~ı : ~γ[~a1 7→~ı1] φ |= µ[~ı1 7→ ~a1][~a 7→~ı] < µ0

φ; Γ ` e1 : τ1[~a1 7→~ı1] �f µ0 φ; Γ ` f : τ0

φ; Γ ` f [~ı1](e1)[~ı] : τ [~a1 7→~ı1][~a 7→~ı] �f µ0

where τ0 = Π~a1 : ~γ1.τ1 → Π~a : ~γ.µ ⇒ τ .

Definition 4.2 (µ-reducibility) Let e be a closed recursive function fun f [~a1 : ~γ1](x1 : τ1)[~a : ~γ] : τ is e0

and µ0 be a closed metric. We say that e is µ0-reducible if e[~ı1](v)[~ı] is reducible for all reducible values
v : τ1[~a1 7→~ı1] and ~ı1 : ~γ1 and ~ı : ~γ[~a1 7→~ı1] satisfying µ[~a1 7→~ı1][~a 7→~ı] < µ0.

4.3 Pattern Matching

The mechanism for declaring datatypes in ML is of great use in practice. It can offer both convenience
in programming and clarity in code. We extend MLΠ,Σ

0,� with pattern matching in this section. However,
the handling of pattern matching is rather involved.

In the rest of this section, we fix δ0 to be a user-defined type constructor that takes index expressions~ı
of sorts ~γ to form a type δ0(~ı). We assume that the constructors ck (k = 1, . . . ,m) of types Π~ak : ~γk.τ

k →

23

x ↓ τ ⇒ (·;x : τ)
(pat-var)

〈〉 ↓ 1 ⇒ (·; ·)
(pat-unit)

p1 ↓ τ1 ⇒ (φ1; Γ1) p2 ↓ τ2 ⇒ (φ2; Γ2)

〈p1, p2〉 ↓ τ1 ∗ τ2 ⇒ (φ1, φ2; Γ1,Γ2)
(pat-prod)

Σ(c) = Π~a : ~γ.τ → δ0(~ı) p ↓ τ ⇒ (φ; Γ)

c[~a](p) ↓ δ0(~ı
′) ⇒ (~a : ~γ,~ı =~ı′, φ; Γ)

(pat-constructor)

p ↓ τ1 ⇒ (φ′; Γ′) φ, φ′; Γ,Γ′ ` e : τ2

φ; Γ ` p ⇒ e : τ1 ⇒ τ2

(type-clause)

φ; Γ ` pi ⇒ ei : τ1 ⇒ τ2 for i = 1, . . . , n

φ; Γ ` (p1 ⇒ e1 | · · · | pn ⇒ en) : τ1 ⇒ τ2

(type-clauses)

Σ(c) = Π~a : ~γ.τ → δ0(~ı)
φ `~ı′ : ~γ φ; Γ ` e : τ [~a 7→~ı′]

φ; Γ ` c[~ı′](e) : δ0(~ı[~a 7→~ı′])
(type-constructor)

φ; Γ ` e : τ1 φ; Γ ` ms : τ1 ⇒ τ2

φ; Γ ` case e of ms : τ2

(type-case)

Σ(c) = Π~a : ~γ.τ → δ0(~ı)
φ `~ı′ : ~γ φ; Γ ` e : τ [~a 7→~ı′] �f µ0

φ; Γ ` c[~ı′](e) : δ0(~ı[~a 7→~ı′]) �f µ0

(�-constructor)

p ↓ τ1 ⇒ (φ′; Γ′) φ, φ′; Γ,Γ′ ` e : τ2 �f µ0

φ; Γ ` p ⇒ e : τ1 ⇒ τ2 �f µ0

(�-clause)

φ; Γ ` pi ⇒ ei : τ1 ⇒ τ2 �f µ0 for i = 1, . . . , n

φ; Γ ` (p1 ⇒ e1 | · · · | pn ⇒ en) : τ1 ⇒ τ2 �f µ0

(�-clauses)

φ; Γ ` e : τ1 �f µ0 φ; Γ ` ms : τ1 ⇒ τ2 �f µ0

φ; Γ ` case e of ms : τ2 �f µ0

(�-case)

Figure 9: Typing rules for tuples and pattern matching in MLΠ,Σ
0

24

v ↓ x ⇒ ([]; [x 7→ v])
(match-var)

〈〉 ↓ 〈〉 ⇒ ([]; [])
(match-unit)

v1 ↓ p1 ⇒ (θ1
I ; θ1) v2 ↓ p2 ⇒ (θ2

I ; θ2)

〈v1, v2〉 ↓ 〈p1, p2〉 ⇒ (θ1
I ∪ θ2

I ; θ1 ∪ θ2)
(match-prod)

v ↓ p ⇒ (θI ; θ)

c[~ı](v) ↓ c[~a](p) ⇒ ([~a 7→~ı] ∪ θI ; θ)
(pat-constructor)

Figure 10: The rules for matching values against patterns in MLΠ,Σ
0

δ0(~ık) are associated with δ0 for forming values of types of the form δ0(~ı), that is, for each closed value
v of type δ0(~ı), v is of the form ck[~ı

′](v′) for some 1 ≤ k ≤ m.
The syntax for this extension is given below. Note that we now use c for both constants and

constructors.
patterns p ::= x | 〈〉 | 〈p1, p2〉 | c[~a](p)
clauses ms ::= (p1 ⇒ e1 | · · · | pn ⇒ en)
expressions e ::= · · · | c[~ı](e) | case e of ms
values v ::= · · · | c[~ı](v)
evaluation contexts E ::= · · · | c[~ı](E) | case E of ms

We require that c be a constructor if c[~ı](p) is a pattern or c[~ı](v) is a value. No index variables or
lam-variables can occur more than once in a pattern. The typing and metric typing rules for pattern
matching are presented in Figure 9. We use τ1 ⇒ τ2 for the type of a clause p ⇒ e, which basically means
that e can be assigned type τ2 if p is required to have type τ1. A judgment of the form p ↓ τ ⇒ (φ; Γ)
means that if p is given the type τ , then the index variables and lam-variables in p must have the
sorts and types declared in φ and Γ, respectively; if we treat p as an expression, then φ0, φ; Γ ` p : τ is
derivable, where we assume that τ is a well-formed type under φ0.

We write v ↓ p ⇒ (θI ; θ) to mean that the value v matches the pattern p and this matching
generates an index substitution θI and a substitution θ. The rules for deriving such a judgment are
listed in Figure 10. If v ↓ p ⇒ (θI ; θ) holds for some clause p ⇒ e in ms then case v of ms is a redex,
which reduces to e[θI][θ]. Note that there may be a certain amount of nondeterminism in the evaluation
of a redex of the form case v of ms: if there are several clauses pi ⇒ ei in ms such that v matches pi,
then any of them (finitely many) may be chosen for evaluating case v of ms. Notice that we can still
claim by König’s Lemma that for every e such that e ↓ holds, there exists a smallest number l such
that the number of steps in each reduction sequence from e is at most l; as before, we use l(e) for such
a number.

In the case where no clause in ms matches v, the evaluation of case v of ms becomes stuck. Given
a well-typed closed expression e, we now have three possibilities for a reduction sequence from e: it
reaches some value, or it becomes stuck, or it proceeds forever. In the current setting, e ↓ means that
every reduction sequences from e either reaches a value or becomes stuck.

With the presence of pattern matching, we can readily construct a nonterminating function without
using fun. The following is such an example written in Standard ML (Milner et al.).

25

datatype omega = D of omega -> int

val f: omega -> int = fn (x) => case x of D g => g(x)

Clearly, the evaluation of f(D(f)) is nonterminating. Later, it will be clear that this is mainly caused
by the negative occurrence of omega in the type of the argument of D. We thus need to impose some
restrictions on user-defined datatypes in order to use types to guarantee program termination.

Definition 4.3 We define ground, positive and negative occurrences of δ0 in a given type τ by structural
induction on τ .

• The occurrence of δ0 in δ0(~ı) is both ground and positive.

• An occurrence of δ0 in τ = τ1 ∗ τ2 is ground (positive, negative) if it is ground (positive, negative)
in τ1 or ground (positive, negative) in τ2.

• No occurrences of δ0 in τ = τ1 → τ2 are ground. An occurrence of δ0 in τ is positive (negative)
if it is negative (positive) in τ1 or positive (negative) in τ2.

• No occurrences of δ0 in τ = Π~a : ~γ.τ1 are ground. An occurrence of δ0 in τ is positive (negative)
if it is positive (negative) in τ1.

• An occurrence of δ0 is ground (positive, negative) in τ = Σa : γ.τ1 if it is ground (positive,
negative) in τ1.

For example, in τ = (δ0(~ı1) → δ0(~ı2)) → δ0(~ı3), the first and the third occurrences are positive, the
second is negative, and no occurrences of δ0 are ground. In δ0(~ı1) ∗ δ0(~ı2), both occurrences of δ0 are
ground and positive, and no occurrences are negative. We impose the following condition on δ0 for the
rest of this section.

Condition 1 All occurrences of δ0 in τ are positive whenever a constructor c associated with δ0 has a
type of the form Π~a : ~γ.τ → δ0(~ı).

Definition 4.4 For each natural number n, we define [τ]n to be a set of values of type τ as follows,
where the definition is inductive on n and the complexity of τ , lexicographically ordered.

1. τ is a base type that is not of the form δ0(~ı). Then [τ]n is the entire set of values of type τ .

2. τ = δ0(~ı). [τ]n = ∅ if n = 0. For n > 0, [τ]n is the set of values v of type τ such that v = ck[~ı
′](v′)

for some 1 ≤ k ≤ m and v′ ∈ [τk[~ak 7→~ı′]]n−1.

3. τ = τ1 ∗ τ2. Then [τ]n = {〈v1, v2〉 | v1 ∈ [τ1]n and v2 ∈ [τ2]n}

4. τ = τ1 → τ2. Then [τ]n is the set of values v of type τ such that for each v1 ∈ [τ1]n, v(v1) ↓ holds
and if v(v1) ↪→∗ v2 then v2 ∈ [τ2]n.

5. τ = Π~a : ~γ.τ1. Then [τ]n is the set of values v of type τ such that for each ~ı : ~γ, v[~ı] ↪→∗ v1 holds
for some v1 ∈ [τ1[~a 7→ ~ı]]n. Notice that the definition is given in such a manner because v must
be of the form λ~a : ~γ.v′ for some value v′.

6. τ = Σa : γ.τ1. Then [τ]n is the set of values of the form 〈i | v1〉 such that v1 ∈ [τ1[a 7→ i]]n.

We say that a type τ is positive (negative) if all occurrences of δ0 in τ are positive (negative).

26

Lemma 4.5 We have the following.

1. If τ is positive, then [τ]n ⊆ [τ]n+1 for all natural numbers n.

2. If τ is negative, then [τ]n ⊇ [τ]n+1 for all natural numbers n.

Proof (1) and (2) are proved simultaneously by induction on n and the complexity of τ , lexicographi-
cally ordered. We present one interesting case for (1).

• τ = δ0(~ı). If n = 0, then [τ]n = ∅ ⊆ [τ]n+1. Assume n > 0 and v ∈ [τ]n. Then v = ck[~ı
′](v′)

for some 1 ≤ k ≤ m and v′ ∈ [τk[~ak 7→ ~ı′]]n−1. Note that τk is positive by Condition 1. Hence,
τk[~ak 7→ ~ı′] is also positive. By induction hypothesis, [τ k[~ak 7→ ~ı′]]n−1 ⊆ [τk[~ak 7→ ~ı′]]n, which
implies that v ∈ [τ]n+1. Therefore, [τ]n ⊆ [τ]n+1.

The rest of the cases can be treated similarly.

Definition 4.6 (Reducibility) Suppose that e is a closed expression of type δ0(~ı). We say that e is
reducible if e ↓ holds and for each v satisfying e ↪→∗ v, v ∈ [δ0(~ı)]n holds for some n ≥ 0.

The notion of reducibility can now be defined for types containing occurrences of δ0 by following
Definition 3.5. As can be expected, Proposition 3.7 still holds for this new definition of reducibility.
Our main task is to establish the following lemma, which is precisely Lemma 3.9 for the new definition
of reducibility.

Lemma 4.7 Assume that φ; Γ ` e : τ is derivable and ·; · ` (θI ; θ) : (φ; Γ) holds. Also assume that (1)
for every x ∈ dom(Γ), θ(x) is reducible, and (2) for every f ∈ dom(Γ), ·; Γ[θI] ` e[θI] : τ [θI] �f µf is
derivable for some µf such that θ(f) is µf -reducible. Then e[θI][θ] is reducible.

Proof Let D be a derivation of φ; Γ ` e : τ and we proceed by induction on the height of D. The proof
is of great similarity to that of Lemma 3.9. All of the existing cases from the proof of Lemma 3.9 can
be reused here essentially without changes. This leaves just the cases dealing with rules (type-case)
and (type-constructor) for datatype elimination and introduction.

First, we need the following lemmas for handling the typing rule (type-case).

Lemma 4.8 We have the following.

1. Assume that τ is positive. Then for every n, all values v in [τ]n are reducible.

2. Assume that τ is negative. Then for every n, all reducible values of type τ are in [τ]n.

Proof (1) and (2) are proved simultaneously by induction on n and the complexity of τ , lexicographi-
cally ordered. We first present some cases for (1).

• τ = δ0(~ı). By the definition of reducibility.

• τ = τ1 → τ2 and v ∈ [τ]n. Assume that v1 ∈ [τ1]n. Then v(v1) ↓ holds by definition. Assume that
v(v1) ↪→∗ v2. Then v2 ∈ [τ2]n holds by definition. By induction hypothesis, v2 is reducible. Hence,
we have that v(v1) is reducible by Proposition 3.7 (3). Since τ is positive, τ1 must be negative.
By induction hypothesis, all reducible values of type τ1 are in [τ1]n. Hence v is reducible.

We now present a case for (2).

27

• τ = τ1 → τ2. Assume that v is reducible of type τ . Also assume that v1 ∈ [τ1]n. By induction
hypothesis, we have that all values in [τ1]n are reducible of type τ1 since τ1 is positive. Hence, v1 is
reducible. By the definition of reducibility, v(v1) is reducible of type τ2. By induction hypothesis,
[τ2]n contains all reducible values of type τ2 since τ2 is negative. Therefore, v(v1) is in [τ2]n. By
definition, v is in [τ]n.

Lemma 4.9 Let ck be a constructor associated with δ0. If ck[~ı](v) is reducible, then v is also reducible.

Proof Note that the type of ck is Π~ak : ~γk.τ
k → δ0(~ık). By the definition of reducibility, ck[~ı](v) is in

[δ0(~ı
′)]n+1 for ~ı′ =~ık[~ak 7→~ı] and some n. This implies that v ∈ [τ k[~ak 7→~ı]]n. Therefore, v is reducible

by Lemma 4.8 (1) as all occurrences of δ0 in τk are positive.

Proof of Lemma 4.7 (continued) We are now ready to handle the typing rule (type-case) when proving
Lemma 4.7 in the presence of pattern matching.

• Assume that D is of the following form, where e = case e0 of ms and τ = τ2.

φ; Γ ` e0 : τ1 φ; Γ ` ms : τ1 ⇒ τ2

φ; Γ ` case e0 of ms : τ2

(type-case)

Let e∗ = e[θI][θ], e∗0 = e0[θI][θ] and ms∗ = ms[θI][θ]. Assume that e∗ ↪→ e′. By induction
hypothesis, e∗0 is reducible. Hence, e∗0 ↓. We show that e′ is reducible by induction on l(e∗0), that
is, the number of steps in a longest reduction sequence from e∗0. We have two possibilities.

– e∗0 ↪→ e′0 and e′ = case e′0 of ms∗. Since l(e′0) < l(e∗0), e′ is reducible by induction hypothesis.

– e∗0 is a value and e′ = e∗1[θ
′

I][θ
′], where e∗0 ↓ p1 ⇒ (θ′I ; θ

′) and e∗1 = e1[θI][θ] for some clause
p1 ⇒ e1 in ms. Then we have the following derivation inside D.

p1 ↓ τ1 ⇒ (φ′; Γ′) D2 :: φ, φ′; Γ,Γ′ ` e1 : τ2

φ; Γ ` p1 ⇒ e1 : τ1 ⇒ τ2

(type-clause)

As can be expected, we can show ·; · ` (θI ∪ θ′I ; θ ∪ θ′) : (φ, φ′; Γ,Γ′). By Lemma 4.9, we can
also show that θ′(x) is reducible for each x ∈ dom(Γ′). By induction hypothesis on D2, we
know that e′ is reducible.

By Proposition 3.7 (2), e∗ is reducible.

It is more complicated to handle the typing rule (type-constructor), since the converse of Lemma 4.9
does not hold under the current definition of reducibility. We can, however, show the following, weaker
lemmas:

Lemma 4.10 Assume that all occurrences of δ0 in τ are ground. Then for every reducible value v of
type τ , v ∈ [τ]n for some n ≥ 0.

Proof The proof proceeds by induction on the complexity of τ . We present some cases.

• τ = δ0(~ı). By the definition of reducibility.

28

• τ = τ1 ∗τ2. Then all occurrences of δ0 in τ1 and τ2 are ground. Since v is of type τ , v = 〈v1, v2〉 for
some values v1 and v2 of types τ1 and τ2, respectively. By induction hypothesis, there are natural
numbers n1 and n2 such that v1 ∈ [τ1]n1

and v2 ∈ [τ2]n2
. Let n = max(n1, n2). By Lemma 4.5,

we have v ∈ [τ]n.

• τ = τ1 → τ2. Then there are no occurrences of δ0 in either τ1 or τ2. By definition, we know that
[τ]n is the entire set of reducible values of type τ for every n. Hence, we are done.

The rest of the cases can be handled similarly.

Lemma 4.11 Let ck be a constructor associated with δ0 and its type be Π~ak : ~γk.τ
k → δ0(~ık). Assume

that all occurrences of δ0 in τk are ground. If v is reducible and ck[~ı](v) is well-typed, then ck[~ı](v) is
reducible.

Proof By Lemma 4.10, we have v ∈ [τ k[~ak 7→ ~ı]]n for some n. By definition, ck[~ı](v) ∈ [δ0(~ık[~ak 7→
~ı])]n+1. Hence, ck[~ı](v) is reducible.

Therefore, we are motivated to impose the following condition when extending MLΠ,Σ
0,� with pattern

matching:

Condition 2 All occurrences of δ0 in τ are ground whenever a constructor c associated with δ0 has a
type of the form Π~a : ~γ.τ → δ0(~ı).

Proof of Lemma 4.7 (continued) We are now ready to handle the typing rule (type-constructor).

• Assume that the derivation D ends with an application of the typing rule (type-constructor),
where e = c[~ı1](e1) and τ = δ0(~ı[~a 7→~ı1]).

Σ(c) = Π~a : ~γ.τ1 → δ0(~ı) φ `~ı1 : ~γ D1 :: φ; Γ ` e1 : τ1[~a 7→~ı1]

φ; Γ ` c[~ı1](e1) : δ0(~ı[~a 7→~ı1])

By induction hypothesis on D1, we know that e∗1 = e1[θI][θ] is reducible. Therefore, e[θI][θ] =
c[~ı1[θI]](e

∗

1) is reducible by Lemma 4.11 if all occurrences of δ0 in τ1 are ground.

This concludes the proof of Lemma 4.7.
We feel that imposing Condition 2 on datatypes is practically adequate. For instance, all the

examples of datatypes we present in the paper satisfy Condition 2. However, there are also many
realistic examples that do not satisfy this condition. For instance, it rules out the following datatype
for lazy lists:

datatype ’a lazyList =

NIL | CONS of unit -> ’a * ’a lazyList

We can actually drop Condition 2 if we employ transfinite induction,4 which is amply explained
in (Chang and Keisler). We sketch the idea as follows.

In Definition 4.4, we can make the definition inductive on ordinals instead of on natural numbers.
Given a positive (negative) type τ ; for a limit ordinal α, we define [τ]α as the union (intersection) of [τ]β
for all β < α; for a successor ordinal α, [τ]α is defined in the same manner as is in the case of natural

4It also seems highly likely that we can drop Condition 2 by adopting the strategy in (Abel and Altenkirch), which
leads to a predicative strong normalization proof for a λ-calculus with interleaving inductive types.

29

numbers. We define [τ] as the union (intersection) of [τ]α for all ordinals α. Note that [τ] is clearly a
set, as it is a subset of all the closed values of type τ . We then modify the definition of reducibility
at δ0 (Definition 4.6) by now requiring that every value that e can evaluate to, belong to [δ0(~ı)]α for
some ordinal α. We can now prove the following lemma, using the observation that for every positive
or negative type τ , [τ] = [τ]α for some ordinal α.

Lemma 4.12 Given a positive or negative type τ , [τ] is the set of all reducible values of type τ .

Proof This follows from induction on the complexity of τ .

With Condition 1, we can now show that a well-typed value of the form c[~ı](v) is reducible if and only
if v is reducible, and then prove Lemma 4.7.

We anticipate that the strategy for defining reducibility for a single recursively defined datatype can
be extended to handle mutually recursively defined datatypes in a straightforward manner. Suppose
that δ1, . . . , δn are mutually recursively defined. Then the requirement is that for m = 1, . . . , n, the
type Π~a : ~γ.τ → δm(~ı) of each constructor c associated with δm should satisfy the property that τ
contains no negative of occurrences of either of δ1, . . . , δn.

Lastly, we mention that the above strategy for defining reducibility for datatypes is incremental.
Suppose that we now declare a new type constructor δ ′0. As the notion of reducibility has been defined
for types of the form δ0(~ı), we can treat these types as base types when we define the notion of
reducibility for types of the form δ ′0(~ı).

4.4 Polymorphism

We can readily extend MLΠ,Σ
0,� with first-order polymorphism, which encompasses let-polymorphism

supported in DML.
type variables α
types τ ::= · · · | α
type schemes σ ::= τ | ∀α.σ
expressions e ::= · · · | Λα.v | e[τ]
values v ::= · · · | Λα.v

A context Γ now maps variables to type schemes. A type judgment is of the form ~α;φ; Γ ` e : σ, where
all free type variables in Γ and σ are declared in ~α. It should be clear how to modify each previous
typing rule to accommodate type variables. We present the typing rules for handling type abstraction
and application as follows.

~α, α;φ; Γ ` v : σ

~α;φ; Γ ` Λα.v : ∀α.σ
(type-tlam)

~α;φ ` τ [well-formed] ~α;φ; Γ ` e : ∀α.σ

~α;φ ` e[τ] : σ[α 7→ τ]
(type-tapp)

Definition 4.13 (Reducibility) For each type scheme σ, the complexity of σ is the number of ∀ occur-
ring in σ. The notion of reducibility for σ can be defined inductively on the complexity of σ.

• σ = τ . The notion of reducibility for type τ is defined as before.

• σ = ∀α.σ1. Assume that e is an expression of type scheme σ. Then e is reducible if e ↓ holds
and e[τ] is reducible for every closed type τ . This is a valid definition since e[τ] is of type scheme
σ1[α 7→ τ], whose complexity is less than that of σ as τ does not contain any occurrences of ∀.

30

We see no difficulty in extending MLΠ,Σ
0,� to encompass second-order polymorphic lambda-calculus, that

is, System F (Girard et al.). For such an extension, we expect to use the notion of reducibility
candidates (Girard) for proving that every well-typed closed expression in this extended system is
reducible. However, we have so far not carried out such an extension in either theory or practice.

4.5 Effects

When extending MLΠ,Σ
0,� with exceptions, all we essentially need is to claim that the value carried by an

exception is reducible whenever the exception is captured. Therefore, we see no difficulty in extending
MLΠ,Σ

0,� with exceptions that carry no values or values of ground types since all such values are reducible
by Proposition 3.6. However, the following example indicates that a nonterminating function can be
readily defined without using recursion when exceptions carrying functions are allowed.

exception D of (unit -> unit) -> unit

val f = fn x => x () handle D g => g x

(* the expression f (fn () => raise D f) loops forever *)

Similarly, there seems no difficulty in handling references to values of base types or user-defined
datatypes by assuming that all memory locations for storing such values are reducible. The problem is
with references to functions, which, if allowed, could easily lead to the construction of nonterminating
programs (without using recursion) as is shown in the following example in Standard ML.

val r: (int -> int) ref = ref (fn x => x)

(* now f is a terminating function *)

fun f(x: int): int = !r (x)

(* now f becomes a nonterminating function *)

val _ = r := f

We currently do not know what sensible restrictions are needed for handling either exceptions carrying
or references to values that are not of ground types. Thus, we disallow such exceptions or references in
MLΠ,Σ

0,�.

5 Practice

We have implemented a type-checker for MLΠ,Σ
0,� in a prototype implementation of DML and experi-

mented with many examples, some of which are presented below. We also address the practicality issue
at the end of this section.

5.1 Examples

We use some examples to demonstrate how various programming features are handled in practice by
our approach to program termination verification. All these examples have been verified in a prototype
implementation of DML, which is available at (Xi).

Primitive Recursion The following is an implementation of the primitive recursion operator R in
Gödel’s T , which is clearly typable in MLΠ,Σ

0,�.

31

fun f91 (x) =

if (x <= 100) then f91 (f91 (x + 11)) else x - 10

withtype

{i:int} <max(0, 101-i)> =>

int(i) -> [j:int | (i<=100 /\ j=91) \/

(i>=101 /\ j=i-10)] int(j)

Figure 11: An implementation of MacCarty’s “91” function

datatype Nat with nat = Z(0) | {n:nat} S(n+1) of Nat(n)

fun(’a) R Z u v = u | R (S n) u v = v n (R n u v)

withtype

{n:nat} <n> => Nat(n) -> ’a -> (Nat -> ’a -> ’a) -> ’a

(* Nat stands for the type [n:nat] Nat(n) *)

Note that Z and S are assigned the following types after the datatype declaration.

Σ(Z) = Nat(0)
Σ(S) = Πn : nat.Nat(n) → Nat(n + 1)

By Theorem 3.10, it is clear that every term in T is terminating (or weakly normalizing). This is the
only example in this paper that can be proved terminating with a structural ordering. The point we
make is that though it seems “evident” that the use of R cannot cause nontermination, it is not trivial
at all to prove that every term in T is terminating. Notice that such a proof cannot be obtained in
Peano arithmetic. The notion of reducibility is precisely invented for overcoming the difficulty (Tait
). Actually, every term in T is strongly normalizing, that is, there is no infinite reduction sequence
from the term even if a redex is allowed to be reduced in any context (not necessarily in an evaluation
context), but this obviously is untrue in MLΠ,Σ

0,�.

Nested Recursive Function Call The program in Figure 11 involving a nested recursive function
call implements MacCarty’s “91” function. The withtype clause indicates that for every integer x,
f91(x) returns integer 91 if x ≤ 100 and x−10 if x ≥ 101. We informally explain why the metric in the
type annotation suffices to establish the termination of f91; for the inner call to f91, we need to prove
that φ |= max(0, 101 − (i + 11)) < max(0, 101 − i) holds for φ = (i : int , i ≤ 100), which is obvious;
for the outer call to f91, we need to verify that φ1 |= max(0, 101 − j) < max(0, 101 − i), where φ1 is
(φ, j : int , P) and P is

(i + 11 ≤ 100 ∧ j = 91) ∨ (i + 11 ≥ 101 ∧ j = i + 11 − 10)

If i + 11 ≤ 100, then j = 91 and max(0, 101 − j) = 10 < 12 ≤ 101 − i; if i + 11 ≥ 101, then
j = i + 11 − 10 = i + 1 and max(0, 101 − j) < 101 − i (since i ≤ 100 is assumed in φ). Clearly, this
example can not be handled with a structural ordering.

Mutual Recursion The program in Figure 12 implements quicksort on a list, where the functions qs
and par are defined mutually recursively. We informally explain why this program is typable in MLΠ,Σ

0,�

and thus qs is a terminating function by Theorem 3.10. Note that the list constructors [] and :: have

32

fun(’a) qs cmp xs =

case xs of

[] => [] | x :: xs’ => par cmp (x, [], [], xs’)

withtype

(’a * ’a -> bool) ->

{n:nat} <n,0> => ’a list(n) -> ’a list(n)

and(’a) par cmp (x, l, r, xs) =

case xs of

[] => qs cmp l @ (x :: qs cmp r)

| x’ :: xs’ =>

if cmp(x’, x) then par cmp (x, x’ :: l, r, xs’)

else par cmp (x, l, x’ :: r, xs’)

withtype

(’a * ’a -> bool) ->

{p:nat,q:nat,r:nat} <p+q+r,r+1> =>

’a * ’a list(p) * ’a list(q) * ’a list(r) ->

’a list(p+q+r+1)

Figure 12: An implementation of quicksort on a list

datatype pattern with nat =

Empty(1) (* empty string matches Empty *)

| Char(1) of char (* "c" matches Char (c) *)

| {i:nat,j:nat} Plus(i+j+1) of pattern(i) * pattern(j)

(* cs matches Plus(p1, p2) if cs matches

either p1 or p2 *)

| {i:nat,j:nat} Times(i+j+1) of pattern(i) * pattern(j)

(* cs matches Times(p1, p2) if a prefix of cs matches

p1 and the rest matches p2 *)

| {i:nat} Star(i+1) of pattern(i)

(* cs matches Star(p) if cs matches some, possibly 0,

copies of p *)

Figure 13: An implementation of pattern matching on strings (1)

33

(* ’length’ computes the length of a list *)

(* empty tuple <> is used for proving that ’length’ is

terminating since ’length’ is not recursive *)

fun(’a) length (xs) = let

fun len ([], n) = n

| len (x :: xs, n) = len (xs, n+1)

withtype

{i:nat,j:nat} <i> => ’a list(i) * int(j) -> int(i+j)

in len (xs, 0) end

withtype {i:nat} <> => ’a list(i) -> int(i)

fun acc p cs k =

case p of

Empty => k (cs)

| Char(c) =>

(case cs of

[] => false

| c’ :: cs’ => if (c = c’) then k (cs’) else false)

(* in this case, k is used for backtracking *)

| Plus(p1, p2) =>

if acc p1 cs k then true else acc p2 cs k

| Times(p1, p2) => acc p1 cs (fn cs’ => acc p2 cs’ k)

| Star(p0) =>

if k (cs) then true

else acc p0 cs

(fn cs’ =>

if length(cs’) = length(cs) then false

else acc p cs’ k)

withtype {n:nat} pattern(n) ->

{i:nat} <n, i> => char list(i) ->

({i’:nat | i’ <= i} char list(i’) -> bool) ->

bool

(* ’explode’ turns a string into a list of characters *)

fun accept p s =

acc p (explode s) (fn [] => true | _ :: _ => false)

withtype <> => pattern -> string -> bool

Figure 14: An implementation of pattern matching on strings (2)

34

been given the following types, where (α)list(n) is a type for lists of length n in which each element
has type α.

Σ([]) = ∀α.(α)list(0)

Σ(::) = ∀α.Πa : nat .α ∗ (α)list(a) → (α)list(a + 1)

For the call to par in the body of qs, the label is 〈0 + 0 + a, a + 1〉, where a is the length of xs ′. So
we need to verify that φ |= 〈0 + 0 + a, a + 1〉 < 〈n, 0〉 holds for φ = (n : nat , a : nat , a + 1 = n), which
is obvious.

For the two calls to qs in the body of par, we need to verify that φ |= 〈p, 0〉 < 〈p + q + r, r + 1〉
and φ |= 〈q, 0〉 < 〈p + q + r, r + 1〉 for φ = (p : nat , q : nat , r : nat , r = 0), both of which hold since
φ |= p ≤ p + q and φ |= q ≤ p + q and φ |= 0 < 1. This also indicates why we need r + 1 instead of r in
the metric for par.

For the two calls to par in the body of par, we need to verify that φ |= 〈(p+1)+q+a, a+1〉 < 〈p+q+
r, r+1〉 and φ |= 〈p+(q+1)+a, a+1〉 < 〈p+q+r, r+1〉 for φ = (p : nat , q : nat , r : nat , a : nat , r = a+1),
both of which hold since φ |= (p + 1) + q + a = p + q + r and φ |= p + (q + 1) + a = p + q + r and
φ |= a < r. Clearly, this example can not be handled with a structural ordering.

Higher-order Function The code in Figure 13 and Figure 14 implements a function accept that takes
a pattern p and a string s and checks whether s matches p, where the meaning of a pattern is given in
the comments.5

The auxiliary function acc is implemented in continuation passing style, which takes a pattern p,
a list of characters cs and a continuation k, and matches a prefix of cs against p and calls k on the
rest of characters. Note that k is given a type that allows k to be applied only to a character list not
longer than cs. The metric used for proving the termination of acc is 〈n, i〉, where n is the size of p,
that is the number constructors in p and i is the length of cs. Notice the call acc p cs ′ k in the last
pattern matching clause; the label attached to this call is 〈n, i′〉, where i′ is the length of cs′; we have
i′ ≤ i since the continuation has the type Πa′ : γ.(char)list(a′) → bool, where γ is {a : nat | a ≤ i};
we have i 6= i′ since length(cs′) = length(cs) must be false when this call happens; therefore we have
i′ < i 6 and then 〈n, i′〉 < 〈n, i〉. It is straightforward to see that the labels attached to other calls to
acc are less than 〈n, i〉. By Theorem 3.10, acc is terminating, which implies that accept is terminating
(assuming explode is terminating). In every aspect, this is a nontrivial example even for interactive
theorem proving systems.

Notice that the test length(cs′) = length(cs) in the body of acc can be time-consuming. This can
be resolved by using a continuation that accepts as its arguments both a character list and its length.
In (Harper), there is an elegant implementation of accept that does some processing on the pattern
to be matched and then eliminates the test. We have also proved that this example is terminating (Xi).

Run-time Check Given the limitation of the type system of DML, there are certainly many cases
where termination depends on a program invariant that cannot (or is difficult to) be captured in
DML. For instance, the following program in DML implements the function that computes the greatest
common divisor of two natural numbers, where mod is the usual modulo operator.

fun gcd (m, n) = if m = 0 then n else gcd (n mod m, m)

5The author learned this implementation from Frank Pfenning.
6Note that length(cs′) and length(cs) have the types int(i′) and int(i), respectively, and thus length(cs′) = length(cs)

has the type bool(if (i′ = i, 1, 0)). Thus, i′ < i can be inferred in the type system of MLΠ,Σ

0,�
.

35

withtype {a:nat,b:nat} <a> => int(a) * int(b) -> int

Unfortunately, we currently cannot verify that the implementation is well-typed in MLΠ,Σ
0,� because it

requires that the following nonlinear constraints be solved.

a : nat, b : nat, a 6= 0 |= b mod a < a
a : nat, b : nat, a 6= 0 |= 0 ≤ b mod a

However, we can insert some run-time checks as follows and then verify that the implementation is
well-typed and thus terminating.

fun gcd’ (m, n) =

if m = 0 then n

else let

val m’ = (n mod m: int)

in

if 0 <= m’ andalso m’ < m then gcd’ (m’, m)

else raise Impossible

end

withtype {a:nat,b:nat} <a> => int(a) * int(b) -> int

Though we can readily strengthen the constraint solver for DML to verify the termination of the gcd

function, this example does indicate that we can insert run-time checks to verify program termination,
sometimes, approximating a liveness property with a safety property. A particularly interesting example
is an implementation of the Knuth-Morris-Pratt string matching algorithm, which is proven terminating
with the insertion of some run-time checks (Xi).

Though using run-time checks to verify program termination may slow down program execution, it
offers the programmer opportunities to capture program errors that would otherwise cause nontermi-
nating program execution. In this respect, it is similar to using run-time array bound checks to capture
program errors that would otherwise lead to meaningless or even harmful program execution such as
security breaching.

5.2 Practicality

There are two separate issues concerning the practicality of our approach to program termination ver-
ification, which are (a) the practicality of the termination verification process and (b) the applicability
of the approach to realistic programs.

It is easy to observe that the complexity of type-checking in MLΠ,Σ
0,� is basically the same as in MLΠ,Σ

0

since the only added work is to verify that metrics (provided by the programmer) are decreasing, which
requires solving some extra constraints. The number of extra constraints generated from type-checking
a function is proportional to the number of recursive calls in the body of the function and therefore is
likely small. Based on our experience with DML, we thus feel that type-checking in MLΠ,Σ

0,� is suitable
for practical use.

As for the applicability of our approach to realistic programs, we use the type system of the pro-
gramming language C as an example to illustrate a design decision. Obviously, the type system of C is
unsound because of (unsafe) type casts, which are often needed in C for typing programs that would
otherwise not be possible. In spite of this practice, the type system of C is still of great help for cap-
turing program errors. Clearly, a similar design is to allow the programmer to assert the termination,

36

or more precisely, the reducibility, of a function in DML if it cannot be verified, which we may call
termination cast. Combining termination verification, run-time checks and termination cast, we feel
that our approach is promising to be put into practice. In particular, the reader can find numerous
realistic examples at (Xi) in support of our claim.

Currently, we have integrated MLΠ,Σ
0,� into DML. However, there are still many remaining problems.

We have not implemented the notion of termination cast. It is completely up to the programmer as to
whether a metric is to be provided; if it is provided, then the type-checker can use it to verify program
termination and thus may report some potential program errors when the verification fails; otherwise,
no termination verification is performed and the function is assumed to be terminating. In this respect,
the integration of MLΠ,Σ

0,� into DML resembles imposing a soft type system onto an untyped language.
In the presence of nonterminating functions, there is clearly a need for distinguishing between

functions that are not expected to always terminate, and those whose termination is expected but
perhaps not (yet) proved; for instance, such a distinction can enable the programmer to identify a
(suspicious) use of a (pontentially) nonterminating function in the definition of a terminating function.
When run-time debugging is concerned, there is also clearly a need for distinguishing functions whose
termination is proved, and those whose termination is expected but perhaps not (yet) proved; for
instance, such a distinction can help the programmer identify the cause of (seemingly) nonterminating
computation. We expect to study how to make such distinctions in an effective manner in a future
implementation.

6 Potential Applications

The main motivation behind our work is to provide a practical mechanism for facilitating program
termination verification. As a consequence, it can help the programmer detect more program errors
and thus enhance program robustness. In this section, we mention some other potential applications
of our approach.

Resource Bound Inference We feel that the types in MLΠ,Σ
0,� can be of great use for inferring the

time and/or space complexity of a (first-order) function. It is shown in (Grobauer) that cost recurrence
equations can be automatically extracted from a first-order DML program. There, it is also suggested
that such automatic extraction should benefit significantly from the presence of metrics in type anno-
tations. Therefore, we expect that the types in MLΠ,Σ

0,� are to be used in resource bound inference for
functional programs.

Resource Bound Certification The notion of proof-carrying code (PCC) provides a means to cer-
tifying a property of low-level code by attaching an independently verifiable proof proving that the
code indeed possesses the property (Necula). A type system for low-level code is presented in (Crary
and Weirich) for resource bound certification, and the programmer is required to write cost functions
at source-level for generating such low-level code. Therefore, a (challenging) question is whether a
compiler can be built to translate the types in MLΠ,Σ

0,� into a proof that certifies resource bounds for the
code compiled from the DML programs. In particular, it is interesting to see whether the termination
of low-level code can be thus certified.

37

7 Related Work

The amount of research work related to program termination is simply vast. In this section, we mainly
mention some related work with which our work shares some similarity either in design or in technique.

Most approaches to automated termination proofs for either programs or term rewriting systems
(TRSs) use various heuristics to synthesize well-founded orderings. Such approaches, however, often
have difficulty reporting comprehensible information when a program cannot be proven terminating.
Following (Ullman and Van Gelder), there is also a large amount of work on proving termination of
logic programs. In (Speirs et al.), it is reported that the Mercury compiler can perform automated
termination checking on realistic logic programs.

However, we address a different question here. We are interested in checking whether a given metric
suffices to establish the termination of a program and not in synthesizing such a metric. This design
is essentially the same as the one adopted in (Pientka and Pfenning), where it checks whether a
given structural ordering (possibly on higher-order terms) is decreasing in an inductive proof or a logic
program. Clearly, approaches based on checking complement those based on synthesis.

Our approach also relates to the semantic labelling approach (Zantema) designed to prove ter-
mination for term rewriting systems (TRSs). The essential idea is to differentiate function calls with
labels and show that labels are always decreasing when a function call unfolds. The semantic labelling
approach requires constructing a model for a TRS to verify whether labelling is done correctly while
our approach does this by type-checking.

A notion of sized types is introduced in (Hughes et al.) for proving the correctness of reactive
systems. There, the type system is capable of guaranteeing the termination of well-typed programs.
An approach is also presented in (Chin and Khoo) to infer sized types for functional programs. The
language presented in (Hughes et al.), which is designed for embedded functional programming,
contains a significant restriction as it only supports (a minor variant of) primitive recursion on sized
type parameters, which can cause inconvenience in programming. For instance, it seems difficult to
implement quicksort by using only primitive recursion. From our experience, general recursion is really
a major programming feature that greatly complicates program termination verification. Also, the size
of data in (Hughes et al.) is uniformly defined as the height of the tree representation of the data while
we allow the user to define size for data of recursive datatypes. In addition, the notion of existential
dependent types, which we deem indispensable in practical programming, does not exist in (Hughes
et al.).

It is also observed in (Grobauer) that the dependent types in DML can be used to encode a notion
of input size. There, an algorithm is presented to extract cost recurrence equations from the first-order
programs in DML. With the availability of metrics in MLΠ,Σ

0,�, we expect that the extracted equations
can be readily verified to be recurrences for general recursion.

When compared to various (interactive) theorem proving systems such as NuPrl (Constable et al.),
Coq (Dowek et al.), Isabelle (Paulson) and PVS (Owre et al.), our approach to program termination
is weaker (in the sense that [many] fewer programs can be verified terminating) but more automatic
and less obtrusive to programming. We have essentially designed a mechanism for program termination
verification with a language interface that is to be used during program development cycle. We consider
this as the main contribution of the paper. When applied, the designed mechanism intends to facilitate
program error detection, leading to the construction of more robust programs.

38

8 Conclusion and Future Work

We have presented an approach based on dependent types in DML that allows the programmer to
supply metrics for verifying program termination and proven its correctness. We have also applied this
approach to various examples that involve significant programming features such as a general form of
recursion (including mutual recursion), higher-order functions, algebraic datatypes and polymorphism,
supporting its usefulness in practice.

A program property is often classified as either a safety property or a liveness property. That
a program never performs out-of-bounds array subscripting at run-time is a safety property. It is
demonstrated in (Xi and Pfenning) that dependent types in DML can guarantee that every well-typed
program in DML possesses such a safety property, effectively facilitating run-time array bound check
elimination. It is, however, unclear (a priori) whether dependent types in DML can also be used for
establishing liveness properties. In this paper, we have formally addressed the question, demonstrating
that dependent types in DML can be combined with metrics to establish program termination, one of
the most significant liveness properties.

Termination checking is also useful for compiler optimization. For instance, if one decides to change
the execution order of two programs, it may be required to prove that the first program always termi-
nates. Also, it seems feasible to use metrics for estimating the time complexity of programs. In lazy
functional programming, such information may allow a compiler to decide whether a thunk should be
formed. In future, we hope to explore along these lines of research.

Although we have presented many interesting examples that cannot be proven terminating with
structural orderings, we emphasize that structural orderings are often effective in practice for establish-
ing program termination. In particular, the recent work on size-change analysis (Lee et al.) presents a
simple and general approach to automatic program termination verification. Therefore, it seems promis-
ing to study a combination of our approach with structural orderings that handles simple cases with
either automatically synthesized or manually provided structural orderings and verifies more difficult
cases with metrics supplied by the programmer.

A probably more important research question, which, unfortunately, is often ignored in most stud-
ies on or related to termination, is to study how program termination verification can be performed
effectively in the presence of nonterminating functions. For instance, when implementing an interpreter
for a simple imperative programming language, one may want to verify that the actual implementation
captures the invariant that a program terminates if all the loops in the program terminate. We believe
that this is a rather difficult question that needs to be properly addressed in future with both theoretical
justifications and practical concerns.

9 Acknowledgment

I thank Chad Brown for providing me with his comments on a draft of the paper and Thorsten Al-
tenkirch for explaining to me how the notion of reducibility can be formed for user-defined datatypes. I
also thank the anonymous referees for their voluminous constructive comments, which have undoubtedly
raised the quality of the paper significantly.

39

References

Abel, A. and T. Altenkirch: 2000, ‘A predicative strong normalisation proof for a λ-calculus with
interleaving inductive types’. In: T. Coquand, P. Dybjer, B. Nordström, and J. Smith (eds.):
Proceedings of International Workshop on Types for Proof and Programs (TYPES ’99). pp. 21–
40, Springer-Verlag LNCS 1956.

BenCherifa, A. and P. Lescanne: 1987, ‘Termination of rewriting systems by polynomial interpreta-
tions and its implementation’. SCP 9(2), 137–160.

Chang, C. C. and H. J. Keisler: 1977, Model Theory, Studies in Logic and Mathematical Foundations,
Volume 73. Amsterdam, the Netherlands: North-Holland.

Chin, W.-N. and S.-C. Khoo: 2001, ‘Calculating Sized Types’. Higher-Order and Symbolic Compu-
tation 14(2/3). (To appear).

Constable, R. L. et al.: 1986, Implementing Mathematics with the NuPrl Proof Development System.
Englewood Cliffs, New Jersey: Prentice-Hall.

Crary, K. and S. Weirich: 2000, ‘Resource Bound Certification’. In: Proceedings of 27th ACM SIG-
PLAN Symposium on Principles of Programming Languages (POPL 2000). Boston, pp. 184–198.

Dershowitz, N.: 1982, ‘Orderings for term rewriting systems’. Theoretical Computer Science 17(3),
279–301.

Dowek, G., A. Felty, H. Herbelin, G. Huet, C. Murthy, C. Parent, C. Paulin-Mohring, and B. Werner:
1993, ‘The Coq Proof Assistant User’s Guide’. Rapport Technique 154, INRIA, Rocquencourt,
France. Version 5.8.

Girard, J.-Y.: 1972, ‘Interprétation Fonctionnelle et Élimination des Coupures dans l’Arithmétique
d’Ordre Supérieur’. Thèse de doctorat d’état, Université de Paris VII, Paris, France.

Girard, J.-Y., Y. Lafont, and P. Taylor: 1989, Proofs and Types, Vol. 7 of Cambridge Tracts in
Theoretical Computer Science. Cambridge, England: Cambridge University Press.

Grobauer, B.: 2001, ‘Cost Recurrences for DML programs’. In: Proceedings of Sixth ACM SIGPLAN
International Conference on Functional Programming (ICFP’01). Florence, Italy, pp. 253–264.

Harper, R.: 1999, ‘Proof-Directed Debugging’. Journal of Functional Programming 9(4), 471–477.

Hughes, J., L. Pareto, and A. Sabry: 1996, ‘Proving the Correctness of Reactive Systems Using Sized
Types’. In: Conference Record of 23rd ACM SIGPLAN Symposium on Principles of Programming
Languages (POPL ’96). pp. 410–423.

Jouannaud, J.-P. and A. Rubio: 1999, ‘The higher-order recursive path ordering’. In: Proceedings of
14th IEEE Symposium on Logic in Computer Science (LICS ’99). Trento, Italy, pp. 402–411.

Lee, C. S., N. D. Jones, and A. M. Ben-Amram: 2001, ‘The Size-Change Principle for Program Ter-
mination’. In: Proceeding of the 28th ACM Symposium on Principles of Programming Languages
(POPL ’01). London, UK, pp. 81–92.

Milner, R., M. Tofte, R. W. Harper, and D. MacQueen: 1997, The Definition of Standard ML
(Revised). Cambridge, Massachusetts: MIT Press.

Necula, G.: 1997, ‘Proof-Carrying Code’. In: Conference Record of 24th Annual ACM Symposium
on Principles of Programming Languages. Paris, France, pp. 106–119, ACM press.

40

Owre, S., S. Rajan, J. Rushby, N. Shankar, and M. Srivas: 1996, ‘PVS: Combining Specification,
Proof Checking, and Model Checking’. In: R. Alur and T. A. Henzinger (eds.): Proceedings of the
8th International Conference on Computer-Aided Verification (CAV ’96). New Brunswick, NJ,
pp. 411–414, Springer-Verlag LNCS 1102.

Paulson, L.: 1994, Isabelle: A Generic Theorem Prover. Springer-Verlag LNCS 828.

Pientka, B. and F. Pfenning: 2000, ‘Termination and Reduction Checking in the Logical Framework’.
In: Proceedings of Workshop on Automation of Proofs by Mathematical Induction. Pittsburgh,
PA.

Speirs, C., Z. Somogyi, and H. Søndergaard: 1997, ‘Termination Analysis for Mercury’. In: P. V.
Hentenryck (ed.): Proceedings of the 4th Static Analysis Symposium (SAS ’97). Paris, France,
pp. 157–171, Springer-Verlag LNCS 1302.

Tait, W. W.: 1967, ‘Intensional Interpretations of Functionals of Finite Type I’. Journal of Symbolic
Logic 32(2), 198–212.

Ullman, J. D. and A. Van Gelder: 1988, ‘Efficient Tests for Top-Down Termination of Logic Rules’.
Journal of the ACM 35(2), 345–373.

Xi, H.: 1998, ‘Dependent Types in Practical Programming’. Ph.D. thesis, Carnegie Mellon University.
pp. viii+189. Available as
http://www.cs.cmu.edu/~hwxi/DML/thesis.ps.

Xi, H.: 1999a, ‘Dependent ML’. Available at
http://www.cs.bu.edu/~hwxi/DML/DML.html.

Xi, H.: 1999b, ‘Dependently Typed Data Structures’. In: Proceedings of Workshop on Algorithmic
Aspects of Advanced Programming Languages. Paris, France, pp. 17–33.

Xi, H.: 2000, ‘Dependent Types for Program Termination Verification’. Available as
http://www.cs.bu.edu/~hwxi/DML/Term.

Xi, H. and F. Pfenning: 1998, ‘Eliminating Array Bound Checking through Dependent Types’. In:
Proceedings of ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion. Montréal, Canada, pp. 249–257.

Xi, H. and F. Pfenning: 1999, ‘Dependent Types in Practical Programming’. In: Proceedings of
ACM SIGPLAN Symposium on Principles of Programming Languages. San Antonio, Texas, pp.
214–227.

Zantema, H.: 1995, ‘Termination of Term Rewriting by Semantic Labelling’. Fundamenta Informat-
icae 24, 89–105.

41

